
CS 116x Winter 2015
Craig S. Kaplan

Module 09
Text Processing

Topics

• Useful String functions
• Useful Character functions
• Introduction to regular expressions

Readings

• The first part of Shiffman’s online notes about data
• Learning Processing, Chapter 18

d
Introduction

We’ve already dealt with text in bits and pieces
throughout the term. But processing text is an
important enough real-world topic for lots of small
programs that it’s worth investigating it in more detail
in its own module.

In some sense, text is the lowest common
denominator of ways to represent data electronically.
Sure, “binary” files are more common for media
because they’re much smaller and faster to process.
But text files are more “accessible”—easier to read
through by eye (if necessary), and easier to hack with
simple scripts.

https://processing.org/tutorials/data/

d
Strings and characters

We’ve already used a few string-related functions
repeatedly during lectures, assignments and labs:

• loadStrings(): given a filename, retrieve the
corresponding text file and break it into an array of
Strings, one per line in the file.

• split(): given a string and a delimiter character or
string, break the string into an array of smaller
strings corresponding to sequences of characters
(including empty sequences) that are separated by
delimiters.

There are a couple of additional global Processing
functions that are worth knowing about in this
context:

• splitTokens(): This function is similar to split(),
but arguably more intelligent. It takes two
arguments as input: a String to process, and
another String containing all possible delimiters
that can separate “tokens”. The tokens are non-
empty strings that don’t contain any of the
delimiters, separated by any number of delimiter
characters. It may take a few experiments to see
why this is different than split().

• join(): The spiritual opposite of split(). Given an
array of strings and a separator string, return a
single long string with all the strings in the original
array strung together, interleaved with copies of the
separator: 

• trim(): return a new copy of the input string in
which any leading or trailing whitespace has been

String[] cat_names = {
 "Ginkgo", "Ginseng", "Arlo",
 "Otis", "Titania" };
println(join(cat_names, ", "));

removed. Useful to whittle a string down to the
“important” bit.

Of course, that’s not the whole story for String
instances. Processing Strings are really just Java
Strings, meaning that you have all the power of the
underlying String class. If you’re processing some
text, it may be useful to browse through the Java API
documentation for String in order to become
acquainted with the tools that are built in. I will call
attention to two in particular:

• equals(): If you want to compare two String
instances, you can’t just use ==, as you would with
ints or floats. The reasons are pretty deep, and
have to do with the difference between primitive
types and class instances. The upshot is that you
have to use the equals() method instead:

• charAt(): A String behaves a lot like an array of
characters. But it isn’t an array, and so we’ve never
been able to use the usual array syntax, such as
square brackets to access individual characters.
Instead, Strings support that behaviour through
dedicated methods. In particular, charAt() takes an
integer index as input and returns the character at
the corresponding position in the String.

Here are a few additional String methods to have a
look at; for the most part, I hope the behaviour is clear
from the name.

• contains()
• startsWith(), endsWith()
• substring()

void sayHello(String name)
{
 // name == "Craig" will probably
 // not work.
 if(name.equals("Craig")) {
 println("Get lost!");
 } else {
 println("Well hello there, "
 + name + "!");
 }
}

Some programming languages,
such as C++ and Python,
support a mechanism called
operator overloading where
you can redefine built-in syntax
like square brackets for new
types like strings. It’s very
flexible, but also increases the
risk of confusion.

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

• toLowerCase(), toUpperCase()
• toCharArray()

The charAt() method returns a value of type char, a
type we haven’t dealt with much in this course. A
char represents a single character of text. It used to
be a very simple type, kind of like a small int. But that
was back in the days when there were only 256
possible characters to deal with; nowadays, with
Unicode, a char needs to be capable of representing a
much larger number of possible characters.

The main observation I want to make about char is
that Java includes a class called Character that
includes a bunch of useful functions for determining
what flavour of character you’ve got. Each of the
following methods takes a single char as input:

• isAlphabetic()
• isDigit()
• isLetter()
• isLetterOrDigit()
• isLowerCase(), isUpperCase()
• isWhitespace()

These methods behave a bit differently from the
methods we’re used to. They’re static, which is a
special designation in Java meaning that they belong
to the class itself, and not to any specific instance.
You’d call them as in this example:

This is another place where the Java origins of
Processing show through, which is too bad. We’ve
seen static methods once or twice during the term.

int countDigits(String inp)
{
 int total = 0;
 for(int idx = 0;
 idx < inp.length(); ++idx) {
 char c = inp.charAt(idx);
 if(Character.isDigit(c)) {
 ++total;
 }
 }
 return total;
}

http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html

Another example is Fisica.init(this), which
sends the init() message to the Fisica class and
not to any specific instance.

d
Case study: spell checker

As an example that combines many of these methods
and ideas, let’s write a sketch that behaves like a spell
checker. First, it will read in a word list and process it
so that we can check if a given String corresponds to
a legal word. Then we’ll read in some arbitrary text file
and check all its words.

First, let’s find a word list. We’ll use SOWPODS, the
standard word list for Scrabble tournament play in
many countries. You can download the word list as a
single enormous text file, with one word per line.
Scrabble doesn’t permit one-letter words, so it’s
important to add two words to this list: “a” and “I”!

It isn’t too hard to load this list into an array of strings,
and to write an isWord() function that tells you if a
given String is in the list:

String[] wordlist;

boolean isWord(String wd)
{
 // return dict.hasKey(wd);
 for(int idx = 0; idx <  
 wordlist.length; ++idx) {
 if(wd.equals(wordlist[idx])) {
 return true;
 }
 }
 return false;
}

void setup()
{
 wordlist = loadStrings(
 “sowpods.txt");
}

http://en.wikipedia.org/wiki/SOWPODS

There is a downside with this approach: it can be slow.
The SOWPODS list has over 250,000 words in it, and
we’ll potentially search the entire array every time we
check spelling. This is a case where using the
“dictionary” data shape can be helpful. Recall that
dictionaries are a way to map a set of keys to
associated values. In this case, we don’t care about
the values, just whether or not a given key (word) is in
the dictionary. We can achieve this behaviour with the
IntDict class:

This approach is a bit advanced, but hopefully the
intended behaviour is clear. The fact that it’s far more
efficient than using an array is also an advanced topic,
but if you’re doing something similar with text
processing it’ll be a useful sample to draw from.

With this dictionary in place, we can read any text file
line by line using loadStrings(), break every line into
words using splitTokens(), and check every word
against SOWPODS using isWord(). In reality, though,
there are a few messy things that we’ll want to
account for as part of a spell checker:

• We’ll probably want to convert the word list, and
every word in the input, to lower case. That’ll make
words easier to look up consistently.

• What about words that have punctuation attached?
• What about possessives—should we strip off the ’s?

IntDict dict;

boolean isWord(String wd)
{
 return dict.hasKey(wd);
}

void setup()
{
 String[] wds =  
 loadStrings("words.txt");
 dict = new IntDict();
 for(int idx = 0; 
 idx < wds.length; ++idx) {
 dict.set(wds[idx], 1);
 }
}

There’s an in-between
approach that I’m skipping,
where you store the words in
an array but search the array
quickly using binary search.
That’s definitely an advanced
CS topic.

• What about hyphenated terms?
• A word that doesn’t appear in the dictionary will be

reported every time it’s discovered in the text. Can
we consolidate our answers so that every illegal
word appears once?

Even a conceptually simple tool like a spell checker
can grow to be fairly complicated (more complicated

than we’ll address in this course) once we try to
account for the annoying “corner cases” of the English
language.
As long as we’re playing with building a dictionary of
English words based on Scrabble, it’s also interesting
to write a sketch that can cheat at Scrabble: given
seven letters, find all possible words of two or more
letters that can be formed from subsets of them. The
tricky part here is the code to generate all possible
words. It turns out that the best approach is recursive!
Given a partial word we’ve generated so far, and a set
of letters we have yet to use, try all possible ways to
add one of the new letters onto the partial word, and

continue recursively with a longer partial word and
fewer unused letters. At every stage, check the partial
word to see if it’s in the dictionary.

d
Regular expressions

Example sketch: SpellCheck

Example sketch: Scrabble

Regular expressions are one of the gold standard
tools that every hacker has in their utility belt. They
are amazingly powerful and versatile, and handy in a
wide range of text processing applications. But they’re
also complicated: a regular expression is basically a
program in its own little programming language, and
we’re not about to start learning a new language on
top of Processing! So my goal is simply to introduce
the topic of regular expressions and show a few
examples, hoping that some day it may turn out to be
useful to be aware of their existence and what they’re
used for.

A regular expression is a specification for a pattern
that might appear in text. If the pattern appears in the
text, we call it a match. The simplest question we can
ask, then, is whether a given piece of text has a match
for a given pattern, using the built-in match()
function. That function returns a value of type
String[], which we’ll get into shortly. For now, it
suffices to know that if the pattern doesn’t appear in
the text, match() will return null.

Every regular expression is encoded in a string, and
the simplest expressions are just literal strings that we
want to search for:

But matching a literal piece of text is just the
beginning. In most implementations of regular
expressions it’s possible to match classes of
characters (e.g., letters, digits, whitespace), repetitions
of simpler patterns, sub-patterns that may or may not
appear, and on and on. For example, we could check

String text =
 "Call me Ishmael. Some years ago--never mind" +
 " how long precisely--having little or no money" +
 " in my purse, and nothing particular to" +
 " interest me on shore, I thought I would" +
 " sail about a little and see the watery" +
 " part of the world.";

if(match(text, "I thought I") != null) {
 println("That's in the text!");
}

whether a piece of text contains a Canadian postal
code by using character ranges in square brackets:

Note the space in the pattern pat. That pattern won’t
match a postal code with no intervening space, or
with a hyphen, etc. We might use a similar idea to
determine whether a piece of text contains a phone
number, or an email address, or a date and time, or
many other common patterns for text.

And what if we want to extract the actual block of
text that matched the pattern? It’s fine to know that
text contains a phone number, but what’s the actual
number? That’s where we can make use of the return
value of match(). The trick is to surround relevant bits
of the pattern inside parentheses. These get extracted
as groups, and included in the array returned by
match().

String pat = "[a-zA-Z][0-9][a-zA-Z] [0-9][a-zA-Z][0-9]";

boolean containsPostalCode(String str)
{
 return match(str, pat) != null;
}

String[] tests = {
 "H0H 0H0",
 "Merry Christmas",
 "Look at this: {N2L 3G1}",
 "H9B 2H"
};

void setup()
{
 for(int idx = 0; idx < tests.length; ++idx) {
 if(containsPostalCode(tests[idx])) {
 println(tests[idx]);
 }
 }
}

Example sketch: FindPhoneNumbers

Don’t worry, I won’t ask you to write code like this. I
just wanted you to be aware of it.

