
CS 116x Winter 2015
Craig S. Kaplan

Module 10
Data Processing

Topics

• Working with tabular data
• Working with hierarchical data
• Accessing live APIs

Readings

• TBA

d
Introduction

The modern world is awash in data. We are
surrounded by computational devices that generate
vast streams of data, more than humanity can possibly
consume directly. A simple example is YouTube: last
time I checked, YouTube users upload 100 hours of
new video to the site every minute.

And yet, there’s a lot of value to be found in this
firehose of data. Games, music, movies, and social
media offer endless opportunities for self-edification,
if we only knew where to look, how to identify the tiny
fraction of content that actually matters to us.
Governments and other public institutions offer
access to fascinating data streams in which can be
found the power for positive societal change.

Because there’s too much data to take in directly, we
need a way to distill out the interesting bits. A simple
human version of this is an infographic, something I

believe GBDA students must learn to create. An
infographic is an attempt to reduce a large amount of
raw data to an easily digestible nugget that
communicates the essence.

Really, though, we need computational tools to
process data for us. Terms like Big Data, Data Mining,
and Machine Learning are all related to the question of
how to extract meaningful trends or unusual
occurrences from data. Of course, this science is still
young, and in need of better tools. Everyday social
media makes this point all too clear: Facebook still
shows me a huge pile of junk mixed in with the small
set of interesting updates from friends. Dating sites
send people out on many, many failed dates before
truly compatibles couples find each other (I’m told).

The goal of this module is to introduce the topic of
data processing with a few examples that operate on
real-world data. Hopefully you will become interested
in finding and using data in your own work. We’ll talk
about two “shapes” of data: tabular data (e.g.,
spreadsheets) and hierarchical data (through JSON).

d
Tabular data

For our purposes, a table is a rectangular grid of
values, much like a Spreadsheet. The grid has rows
and columns. We usually think of each row as defining
a single cohesive piece of data, a collection of
individual pieces of information that are all related.
Each column defines one piece of data associated
with each record. In an iTunes music library, the rows
are records that describe each song you own; the
columns are pieces of information associated with
songs (title, artist, genre, etc.). In a marking
spreadsheet, the rows correspond to students and the
columns to things that were marked (assignments,
exams, etc.). Each column may have a heading (a
name), and a type (which we’ll limit to String, float,
and int).

I highly recommend the book
Dataclysm by Christian Rudder.
It’s an exploration of interesting
trends and statistics that
emerge by analyzing the huge
volume of data found in
OKCupid profiles.

A good first place to find interesting tables is in the
“open data” websites of public organizations like
governments. For example, the Region of Waterloo
publishes a catalog of public data in different formats
at www.regionofwaterloo.ca/opendata. Let’s start
there.

Looking through the catalogue of available data, I
became curious about “Reserved Street Names”,
which appears to be available in a simple, easy to read
format called CSV (“comma-separated values”). As it
turns out, that’s a lie. The CSV link opens up a text file
with cute boxes drawn using ASCII Art:

OK, yes, they also make the same data available in an
Excel spreadsheet, and I could easily export a real
CSV file from Excel. But this turns out to be a nice
lesson in handling messy real-world data. We should
be able to write some Processing code to read this file
despite the extraneous ASCII Art. We can use the Text
Processing tools we learned previously to extract the
useful bits from this file:

| FullStreetName | Municipality |

| Abbey Glen | Kitchener |

| Aberle | Woolwich |

| Abeth | Kitchener |

| Abitibi | Cambridge |

| Able | Cambridge |

| Abram Clemens St | Kitchener |

http://www.regionofwaterloo.ca/opendata
http://www.regionofwaterloo.ca/en/regionalGovernment/ReservedStreetnamesDataset.asp

This example doesn’t really do anything. It just prints
out the street names and municipalities, surrounding
them with curly braces to prove that they’ve been
extracted correctly. A better demonstration of
capturing this data would be to store it in some kind
of table data structure. Sure enough, Processing gives
us a Table class for exactly this purpose. We can
create Table instances, add and remove rows and
columns, and populate the table with data. The online
documentation for Table gives a good example of
doing this, and you can play with a sample sketch that
constructs a Table from this dataset.

Honestly, there isn’t all that much that can be done
with this data, but it’s a good starting point. Let’s
move on to something more interesting: money. The
province of Ontario requires that the salaries of all
public sector employees who make over $100,000 a
year be made available to the public. The data is all
online. Again, though, it’s not in a particularly

void setup()
{
 String[] lines = loadStrings(
 "ReservedStreetnames.txt");
 for(int idx = 0;
 idx < lines.length; ++idx) {
 if(lines[idx].startsWith("-")) {
 // Line starts with -, just skip it.
 continue;
 } else {
 // Extract the text between the vertical pipe
 // characters
 String[] boxes = splitTokens(
 lines[idx], "|");
 // Use the trim() function to remove extra
 // whitespace around every street name and
 // municipality
 boxes = trim(boxes);
 println("{" + boxes[0] + "} "
 + "{" + boxes[1] + "}");
 }
 }
}

Example sketch: ReservedStreetsTable

https://processing.org/reference/Table.html
http://www.fin.gov.on.ca/en/publications/salarydisclosure/pssd/

convenient format: you can look at it as HTML on a
web page, or you can download a PDF. That’s a good
starting point, but what if I want to perform real
calculations on the data? For example:

• Who is the most highly paid person in a given sector
in the province? The most highly paid at a given
institution?

• What is the average salary for all the people with a
given job title?

• What’s the most extreme salary inversion, e.g., the
highest paid junior professor?

It would be useful to grab this data and get into a
format that permits computation. Computer scientists
sometimes talk of “scraping”, “snarfing”, or “munging”
data. It’s not obvious, but there’s an easy way to do
that—simply highlight the entire table on one of these
HTML pages and copy it into a text file. My Chrome
browser inserts tabs at all column breaks in the table.
We can use the tab character (written ‘\t’ in
Processing) as a delimiter to break lines of the table
into fields:

void setup()
{
 Table table = new Table();
 table.addColumn("Institution");
 table.addColumn("Last name");
 table.addColumn("First name");
 table.addColumn("Position");
 table.addColumn("Salary", Table.FLOAT);

 String[] lines = loadStrings("salaries.txt");
 for(int idx = 0; idx < lines.length; ++idx) {
 String[] fields = splitTokens(
 lines[idx], "\t");
 TableRow row = table.addRow();
 row.setString("Institution", fields[0]);
 row.setString("Last name", fields[1]);
 row.setString("First name", fields[2]);
 row.setString("Position", fields[3]);
 row.setFloat("Salary",
 processDollars(fields[4]) +
 processDollars(fields[5]));
 }
}

The function processDollars() is a helper function
that converts a String into a floating-point dollar
amount. See the sample sketch for the
implementation.

That’s still a hefty amount of work to read in a file. We
can do something very slick with this file, though.
Recall that the fields are delimited by tab characters.
It turns out that “tab-separated values”, or TSV, is a
standard file format for tables, one that Processing
understands natively. So we can replace almost all of
the above with a single line:

The loadTable() function behaves a lot like
loadStrings() or loadImage(), as you might expect.
The optional second argument gives hints to
Processing for how to interpret the tabular data. In
this case we inform Processing that the file is in TSV
form instead of the usual CSV (comma-separated
values). There’s one downside here, namely that the
columns don’t get names when we do this. That
means we have to refer to them by position instead:

But we can fix this with a small tweak. We can
manually add a new first row to the input file
containing the names of the columns. Processing
supports another option to treat the contents of the
first row as special:

Table table = loadTable(”salaries.txt”, "tsv");

// You can't do this anymore, because Processing
// doesn't know about the names of the columns.
// String str1 = table.getString(5, "Position");

// This works.
String str2 = table.getString(5, 3);

Example sketch: Salaries

One final problem is that we want to collapse the two
final columns of the table in the source file into a
single column containing the sum of salaries and
benefits. The sample sketch shows how to do this.

As a final example of reading tabular data, consider
the Region of Waterloo’s food inspection reports. This
dataset comes in three separate tables:

• A Facilities file, in which each row gives complete
information about a single food-serving facility in
the region. The first column is a unique ID code
associated with each facility, which will be used in
the other tables to refer to it.

• An Inspections file, a table that lists individual
inspections in which someone visited a facility. Each
inspection has its own unique ID, and mentions the
ID of the facility to record where the inspection took
place.

• An Infractions file. Each inspection may result in zero
or more infractions against the food safety code.
These infractions are recorded one per row in this
file. The infraction record refers back to the
inspection ID.

The good news is that each of these files is in a proper
CSV format, and can be read into a sketch in a single
line of code. The difficulty is that in order to do
interesting things, you have to gather information
from across multiple tables. For example, here’s how
to list all the infractions associated with a given
restaurant, given the restaurant’s name:

• Iterate over the rows of the Facilities table. For each
row, check if the “BUSINESS_NAME” column
matches the name you’re looking for. If it does, save
the ID associated with that name.

• Iterate over the rows of the Inspections table. For
each row, if the “FACILITYID” column matches the

Table table = loadTable(
 ”salaries.txt”, “header, tsv");

Example sketch: SalariesTable

Be sure to look at the
beginning of the salaries.txt
file in the SalariesTable sketch,
to see the addition of the
column headers.

facility you’re looking for, append the associated
inspection ID to an array of strings.

• Finally, gather together an array of all the infractions
in the Infractions table whose “INSPECTION_ID” is in
the list of IDs set aside in the previous step.

Wow, that’s a lot of work. It’s more than I expected
would be necessary when I started playing with the
dataset, and more than I would ever ask for in this
course. But the result is fairly cool—a sketch in which
you can type in the name of a restaurant and see a
complete list of its infractions. That was sufficiently
worthwhile that I decided to include it here. (It’s still
only a bit over 100 lines of code.)

Before I leave this section of the notes, let me offer a
summary list of useful table-related functions in
Processing. See the Table documentation for
complete information.

Creating a table

• new Table()

Filling a table

• addColumn(), addRow()
• setInt(), setFloat(), setString() (these exist

as three-argument methods of Table, or two-
argument methods of TableRow)

Reading a table

• getRowCount(), getColumnCount()
• getRow()
• getInt(), getFloat(), getString() (these exist

as two-argument methods of Table, or one-
argument methods of TableRow)

Example sketch: FoodInspections

d
Hierarchical data

Sometimes we want to obtain data from the outside
world that isn’t as cleanly structured as an array of
objects or a table. For example, we might want to load
in all of the information about a restaurant. That data
might include a wide array of heterogeneous data:

• The name, address and phone number of the
restaurant (as strings)

• The opening hours, which could be an array of seven
objects, each of which is made up of two strings
(the opening time and closing time each day of the
week). Or maybe each time is given as two integers,
and hour and a minute

• A list of strings giving links to review sites
• A set of menus (breakfast, lunch, dinner), each of

which contains a heading describing the menu
together with an array of records giving names,
descriptions and prices of dishes.

• etc.

Data shapes like arrays and tables are good for lots of
applications (including sub-parts of our hypothetical
restaurant information), but they just can’t handle this
kind of freeform structured data in full. There are
numerous ways that this kind of data does get
represented in practice. Two very popular forms are
XML (eXtended Markup Language, which we won’t
talk about in this course) and JSON (JavaScript
Object Notation, which will form the rest of the
module).

JSON is a very small subset of the Javascript
language, which can be used to describe collections
of data. It started out as a means for a script running
on a web page to exchange data with a web server.
But it was so simple and useful that it became a bit of
a standard way for programs to send structured
information back and forth. In particular, it’s built in to
Processing.

Loading JSON objects

The simplest way to get a JSON object into a sketch is
to load it from a file. The format should be familiar by
now, as it’s analogous to reading images, vector
illustrations and tables.

Reading data from JSON objects

A JSONObject behaves a lot like an instance of a class.
It has a number of named fields, and each field has an
associated type, and stores a value. There are six
types that we’ll need to think about for fields. A field
can have one of the familiar types int, float,
boolean or String. A field can also contain an array,
which is stored using the class JSONArray, or it can
even contain a nested (smaller) JSONObject.

However, a JSONObject’s fields aren’t treated like class
fields by Processing. So after loading in my_obj above,
you can’t say something simple like
my_obj.fieldname as you might with a regular class
instance. Instead, you need to call a method of my_obj
that reads the contents of the field for you. If you
knew that your JSONObject had a field called “name”
of type String and a field called “weight” of type int,
then you could write code like this:

A JSONObject can contain another JSONObject in one
of its fields, and it can contain a JSONArray in one of
its fields. Similarly, a JSONArray can contain a
JSONObject or another JSONArray in any of its
numbered entries. There’s nothing magical about this,
but it just means that there may be cases where you
need to attach a few calls to, e.g., getJSONObject()

JSONObject my_obj =  
 loadJSONObject("data.json");

String obj_name =
 my_obj.getString("name");
int obj_weight =
 my_obj.getInt("weight");

together to “drill down” to the lowest level of a chunk
of hierarchical data:

…or, if you’re feeling a bit more intense, you can do all
of this in one statement, borrowing a bit of unusual
syntax from ControlP5:

You almost certainly won’t be constructing
JSONObject instances from scratch, so once you’ve
acquired an instance by loading it in, you basically just
need to use the methods getString(), getInt(),
getFloat(), getBoolean(), getJSONArray(), and
getJSONObject(). Each of these methods takes a
single String as its argument, corresponding to the
name of the field you want to retrieve. The JSONArray
class supports exactly the same methods, except in
that case they take an int as an argument,
corresponding to the location you want to read from
the array.

The easiest way to tell what fields a JSON object
supports is to read the documentation provided by
whoever gave you the object. If that doesn’t work, it’s
helpful to look at the object itself (i.e., the raw input
file)—they’re pretty easy to read.

JSONArray my_arr =  
 my_obj.getJSONArray("data");
JSONObject my_event =  
 my_arr.getJSONObject(0);
String name =  
 my_event.getString("name");

String name = my_obj
 .getJSONArray("data")
 .getJSONObject(0)
 .getString("name");

Example sketch: SimplestJSON

d
Web APIs

An API (Application Programming Interface) is a fancy
software engineering name for something we’ve dealt
with all term. It’s the set of functions that a given
library understands, through which you access its
features. So far this term, all the APIs we’ve used have
either been built in to Processing, or accessible
through an import statement.

But here’s the exciting bit—many online services offer
APIs as well! We use many online services these days
that organize vast amounts of data on our behalf.
Social media certainly works this way (Facebook
stores piles of status updates, photos, notes, lists of
friends etc.), as do photo-sharing sites, cloud-based
storage, and other information resources. Some of
these services publish public APIs through which you
can access the underlying data without having to
knock on the front door by visiting the service with a
web browser. This is a very powerful idea: it lets you
write you own custom applications that use a pile of
data without getting stuck with the service’s view of
how that data should be viewed.

You can think of accessing a Web API as “calling a
function over the internet”. You’re calling a function in
order to obtain some piece of information as a result,
but instead of your computer working out the answer
to the function on its own, it sends the request off to a
second computer. That computer figures out the
answer and ships it back to you in the form of a
JSONObject (or some other structured data value).

In order to call the function you want, you need to
package up your request into a form that can be sent
off to the other computer. The nice bit is that this
doesn’t require any new ideas or code. Web API calls
look just like URLs, and you can “call the function” by
giving the URL you want to loadJSONObject().

A good source of examples is api.uwaterloo.ca, the
University of Waterloo’s own internal open data API. It
supports a number of different function calls that
return information about the campus and its environs.
Visit the API’s documentation page to see the list of
queries you can make. If you want to find out the
current weather, for example, you can access the
following URL: https://api.uwaterloo.ca/v2/weather/
current.json. Try it now in your browser! Hopefully it
will show you the text of the JSON as output (it works
in Chrome, at least). So, if you store that JSON object
in a variable:

Then you can start querying the variable weather to
find out things like the current temperature and
precipitation. (The final assignment of the course is
very much like this, but I give you a class that handles
the querying for you. You ask that class to give you
back the JSONObject.)

If you try other UW API calls, you’ll find that they
return an error object saying that you need an API key.
Most Web APIs require you to pass in a key along with
your request. The key identifies you, and allows the
web service to track how much you’re using their data
(which is useful, for example, if they want to bill you
for your use of their service). In the assignment, you’ll
see that I’ve provided a single key for the UW API that
you can use for the duration of the term. Normally
you’d register for your own key as a developer.

If you try searching the internet for the name of your
favourite online service together with “API”, you’ll see
the range of tools available to programmers. Twitter’s
API is a particularly well known one. Facebook has
one for the graph of your connections to your friends,
but not for status updates. The Google Maps API
powers a large number of online tools by third parties.
Even IMDB and Rotten Tomatoes publish APIs for
getting at live movie data. Many mobile apps are
really just user interfaces wrapped around accesses to

JSONObject weather =
 loadJSONObject("https://api.uwaterloo.ca/v2/weather/current.json");

http://api.uwaterloo.ca
https://github.com/uWaterloo/api-documentation#accessing-the-api
https://api.uwaterloo.ca/v2/weather/current.json

Web APIs. Waterloo’s getting in on the game too. The
current API will soon be enhanced with a lot more
functionality and pretty soon you’ll be invited to use
the new Waterloo Student Portal, which runs on top
of that API layer.

