{ ‘A, ‘a’, ‘'y’, ‘s’ }
and “Strmgs”

Low-level array operations

intl] arri; _

intl] arr2 = new int[17 1; P_e(_:la_"atl?n and

intf[] arr3 = {1, 2, 3, 4 3}, initialization
Reading and

arr2[15] = arr3[2]; .
writing elements

int els = arr2.length; Array size

Array idioms

An idiom is not a single algorithm or line of code.
It’s a rough template that can be customized to a
specific situation.

for(int 1idx = 0; 1idx < arr.length; ++idx) {

arr[idx]

}

Arrays are just values...

int[] arri
int[] arr?2

{17 27 37 4};
arri;

int[] processArray(int[] arr, float val)
{

} .

intl] arr3 = processArray(arrl, 3.14);

...aren’t they?

An array value is really an arrow pointing to
the place in memory where all the array
elements are stored. We say that an array
variable is a reference.

1 = 17;
[Jarr = {1, 2, 3, 4 };

(i 17)
(arr)

int a =1;

int b = 2;

intl] a
int[] b
a = b;
bLo] = 3;

println(a[@] + b[@]);

N_\
W

N

println(a[@] + b[@]);

] —

println(a[@] + b[@]);

Q

—

C N ()

O

— 5

1nt[] ={ 1 3}
int ={ 2 };
0L0] = 3;

println(a[@] + b[@]);

Q

O

N ()

1nt[] ={ 1 3}
int ={ 2 };
0L0] = 3;

println(a[@] + b[@]);

Q

O

N ()

int[] a
intl] b

println(a[@] + b[0]);

)

1 %}
2 };

{
{

O

N ()
Q

References

The base types int, float, boolean, and char
are “primitive”: their values are “naked” and
copied around directly.

All other types (arrays and objects, including

String) are passed around by reference
(arrows).

Functions on arrays

1. Distillation

There are many natural operations on arrays
that involve “reducing” the array down to a
single value:

e Largest element

e Smallest element

e [s X In the array?

 Find the index of X

e Sum of elements

e Average of elements

e Number of positive elements

float distill(float[] arr)

{
float result
for(int 1dx = 0; 1dx < arr.length; ++idx) {
result = arr[idx] result

}

return result;

}

float largestElement(floatl] arr)
{
float result = arrl[0];
for(int idx = 0; 1idx < arr.length; ++idx) {
1f(arrf[idx] > result) {
result = arr[idx];

)
)

return result;

)

float largestElement(floatl] arr)

{
float result = arrl[0];

for(int 1dx = 1; 1dx < arr.length; ++idx) {
1f(arrf[idx] > result) {
result = arr[idx];

)
)

return result;

)

This iIs a common enough operation that max()
and min() already work on arrays of humbers.

float[] arr = { 1.0, 4.2, -129832, PI, 2.718 };
println(max(arr));
println(min(arr));

Functions on arrays

2. Generation

Sometimes we want to conjure an array from
nothing. We can do that in a function that
takes values as input an returns an array.

Example: write a function that takes an

Integer n as input and produces the integer
array {0, 1, 2, .., n-11}.

intl] upto(int n)
{
intl] ret = new int[n J;
for (int 1dx = 0; 1dx < n; ++idx) {
ret[1idx] = 1dx;
J

return ret;

¥

Functions on arrays

3. Transformation

Often we want to transform an array element-
by-element into a new array. Sort of a
combination of distillation and generation.

Type2[] transform(Typell] arr)

{
Type2[] ret = new Type2[arr.length J;

for(int 1dx = 9; 1dx < arr.length; ++idx) {
ret[idx] = arr[idx]
T

return ret;

}

intl] badArrayClone(int[] arr)
{

return arr;

)

intl] badArrayClone(int[] arr)
{

)

return arr;

int[] goodArrayClone(int[] arr)
{

intl] ret = new intl arr.length J;

for(int 1dx = 0; 1dx < arr.length; ++idx) {
retlidx] = arr[idx];

)

return ret;

Growing an array

Exercise: add one new element to the end of
an array.

There’s no way to grow an array “in place”.
Instead, we have to produce a new array that
has all the original elements together with the
new one.

Growing an array

The built-in function append() adds a single
new element to an array, returning the
enlarged array.

intl] arrt {

— 4}
float[] arr?2 4

1 ’ ’ ’

{ 1.2, 3.4, 5.6, 7.8 };
arrl = append(arrl, 5);

arr2 = append(arr2, cos(2.0 * PIL / 5.0));

Casting

The append() function and other array
functions tend to work fine with built-in

types, but “need help” with other types.

class Circle

{ ..}

Circle[] circs = ..
circs = append(circs, new Circle(10, 20, 30));

Type mismatch, “java.lang.Object” does not

match with “sketch 170108c.Circle[]”

Casting

A “casting operator” is a way to remind Processing
of what type you’re working with in cases where it
forgets.

Circlel[] circs = ..

c _
(Circlel])pppend(circs, new Circle(10, 20, 30));

Force the expression that follows to
be treated as an array of Circles.

Other occasionally useful array operations:

int[] a
int[] b

{
{

6
5

4

4

6,

concat(a, b) =

reverse(a) =

shorten(b) =

sort(a) =

subset (

a,

2,

3

)

4, 1, 2, 5 };

7}

6 | 3 | 4 | 1
5 | 2
5 | 6
1| 2

= 4 | 1

Strings

In many programming situations, we
want to deal with blocks of text.

e Text boxes in a web form

e Text drawn to the screen

e Analyzing text documents for
patterns

We need a type to hold blocks of
text. Processing includes the type
String, which is inherits from Java.

Strings and characters

A character is one symbol or letter in a string,
iIncluding whitespace and other control

characters. Characters are represented using the
built-in type char.

Literals

To give an explicit character (a literal), put it In
single quotes.

char a = 'a’;
char b = 'd’;
char ¢ = " ';
char d = '%';

To give an explicit string, put it in double
quotes.

String name = "Jyn Erso”;
String title = "Rogue One: A Star Wars Story”;
String line = "It was the best of times, it was the worst of times.”;

. " . " .
println(] "mouse 1is pressed”]);

String literals

img = loadImage(]| "bird.png” D ;

Special characters

And now the leather-covered sphere came hurtling through the
air,

And Casey stood a-watching it in haughty grandeur there.
Close by the sturdy batsman the ball unheeded sped—
“That ain’t my style,” said Casey. “Strike one!” the umpire said.

——

String lastline = That ain't my style,"” sa:

Ernest Lawrence Thayer, Casey at the Bat (1888)

Special characters

Use the backslash \ to tell Processing about
upcoming special characters.

char single_quote = "\''; // Only in chars
String double_quote = "\""; // Only in strings
char newline = '"\n’; // Like pressing return

char uni = '"\u2603"'; // 16-bit Unicode

Special characters

Use the backslash \ to tell Processing about
upcoming special characters.

char single_quote = "\''; // Only in chars

String double_quote = "\""; // Only in strings

char newline = '"\n’; // Like pressing return
char uni = '"\u2603"'; // 16-bit Unicode

char backslash = "\\';

\ BACKSLASH

\ REAL BACKSLASH

\\ REAL REAL BACKSLASH

W ACTUAL BACKSLASH, FOR REALTHIS TME

A\ ELDER BACKSLASH

WA BACKSLASH LHICH ESCAPES THE S(REEN AND ENTERS YOUR BRAIN

AN\ BACKOLABH 50 REAL IT” TRANSCENDS TIME AND SFRCE
AAAA\\Y BACKSLASH To END ALL. OTHER TEXT
WAWWWW L. THE TRUE NAME OF BAAL, THE SOUL-EATER

https://xkcd.com/1638/

String lines = "Close by the
sturdy batsman the ball
unheeded sped—\n\"That ain't my
style,\" said Casey. \"Strike
one!\" the umpire said.";

This would be one long line in your program!

Strings are just values

String str1 = "Hello”;
String str2 = stri;

String processString(String str, float val)
{

} "

String str3 = processString(str1, 3.14);

Stringl[] columns = { "Doric”, "Ionic”, "Corinthian” };

String VS. charl]

Strings wish they were arrays of characters, but

they aren’t quite. Still, your knowledge of arrays
will help you.

charl] wd = {..}; String wd = "..";

)

char[] wd = {'h","'e’,"1",'1","0"};

| —— ——

String wd = "hello”;

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl] wd = {..}; String wd = "..";
int len = wd. length;

char ¢ = wd[2];

wdl[4] = "!';

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl[] wd = {..}; String wd = ".";

int len = wd. length; int len = wd.length();
char ¢ = wd[2];

wd[4] = "!";

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl[] wd = {..}; String wd = ".";
int len = wd. length; int len = wd.length();
char ¢ = wd[2]; char ¢ = wd.charAt(2);

wd[4] = "!'";

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl[] wd = {..}; String wd = ".";
int len = wd. length; int len = wd.length();
char ¢ = wd[2]; char ¢ = wd.charAt(2);

wd[4] = "1, NOTHING!

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl] wd = {..}; String wd = "..";
int len = wd. length; int len = wd.length();
char ¢ = wd[2]; char ¢ = wd.charAt(2);
wd[4] = "!'"; NOTHING!

Strings are immutable: once you create one, you
can’t change its contents. Instead, assigh a new
string to the same variable.

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl[] wd = {..}; String wd = ".";
int len = wd. length; int len = wd.length();
char ¢ = wd[2]; char ¢ = wd.charAt(2);
wd[4] = "!'"; NOTHING!

char[] wd3 = concat(wdl, wd2);

String VS. charl]

Strings wish they were arrays of characters, but
they aren’t quite. Still, your knowledge of arrays
will help you.

charl[] wd = {..}; String wd = ".";
int len = wd. length; int len = wd.length();
char ¢ = wdl[2]; char ¢ = wd.charAt(2);
wd[4] = "!'"; NOTHING!

char[] wd3 = concat(wdl, wd2);

String str3 = strl1 + str2;

Concatenating strings

The + operator on strings is very flexible.

"Call me” + " " + "Ishmael.”

"Ours go to " + 11

"The value of PI is " + PI

"A " + true + " or " + false + " question”

float x, y;
"The point 1sat (" + x+ ", " +y + ")"

Parsing strings

We often obtain “raw text” from external
sources, and need to parse it into meaningful
data.

The built-in functions int() and float() work on
strings and arrays of strings.

int a = 1int("12347);
float b = float("567.89");

Stringl] strs = { "-81", "0", "36" };
intl] arr = int(strs);

String equality

We often want to compare two strings to see
whether they have the same text. The String
class has an equals() method for that purpose.

1f(strl.equals(str2)) {
// The strings are equal.

)

String equality

We often want to compare two strings to see
whether they have the same text. The String
class has an equals() method for that purpose.

1f(strl.equals(str2)) {
// The strings are equal.

)

WARNING! The following is legal code, but
probably not what you want.

1f(str1 == str2)) {
// What can go wrong?

)

String s = "He";

orintln("Hello"”);

orintln(s + "110”);

orintln("Hello” == (s+"110"));

“hello”
String a = "Hello"; [a O’ﬂ/

String b

[
Q

"Hello";
"Hello"”;

String a
String b

“hello”
a 0’%-/

String a = "Hello"; [
String b = a;

(b
String a = "Hello";
String b = "Hello";

String a
String b

String a
String b

"Hello";
a;

"Hello";
"Hello";

“hello”

(i 7
[b

a.equals(bj)V/
a::b{

String a
String b

String a
String b

"Hello":

"Hello":
"Hello":

(2

“hello”

—7

(b

a.equals(b)V/'
a ==>b {
“hello”
o] —
(b ——— 3| “hello”

String a
String b

String a
String b

"Hello":

"Hello":
"Hello":

“hello”

o 7
(b

a.equals(b)V/'
a::b{

“hello”

A

(2
(b

a.equals(bj)V/
a==Db X

“hello”

The .equals() method checks if two strings have
the same characters.

The == operator checks if they’re the same string
In the computer’s memory.

(A bit like == vs. === In Javascript?)

Outputting text

The built-in println() function will write any text
(or really, any value at all) to the console. Handy
for debugging!

The built-in text() function will draw text at a
given position In the sketch window, using the
current fill colour.

See also textSize(), textFont(), createFont(),
textAlign().

vold setup|()

{
size(275, 400);

H+I-H-I-I-H-I'-I-‘-‘-‘...-‘-‘-‘

textSize(72); E
colorMode(HSB, 255);
background(0, 0, 255);
for (int y = 80; y < 380; y += 15) {
fill(map(y, 80, 380, 0, 255),
255, 255);
text("CS 106", 10, vy);

}

}

