
Module 08

Randomness and
noise

csk
Sticky Note
In delivering this module, it became clear that we wouldn't have time to talk about the noise() function during the week. So we'll put off noise() for now and return to it at the end of the term, time permitting.

“Maybe the greatest novelty
here is the ability of the
computer not only to follow
ant complex rule of
organization but also to
introduce an exactly calculated
dose of randomness.”

— E.H. Gombrich

Georg Nees, Gravel Stones (1971)

Generative Art

Plate 5. Using a black,
hard crayon draw a
twenty inch square.
Divide this square into
one inch squares.
Within each one inch
square, draw nothing or
a freehand line or lines.

Sol Lewitt

Plate 5. Using a black,
hard crayon draw a
twenty inch square.
Divide this square into
one inch squares.
Within each one inch
square, draw nothing or
a freehand line or lines.

Sol Lewitt

Athanasius Kircher (1602–1680)

Arca
Musarithmica

float random(float lo, float hi) { ... }

Return a random number at least as big as lo
but smaller than hi.

Get a different answer every time!

float random(float lo, float hi) { ... }

Return a random number at least as big as lo
but smaller than hi.

Get a different answer every time!

float random(float hi)
{
 return random(0, hi);
}

Random integers

int(random(N))

Choose a random integer from the set
0, 1, …

Random integers

int(random(N))

Choose a random integer from the set
0, 1, … N-1

Flipping a coin
Write a function that simulates flipping
a fair coin.

Flipping a biased coin
What if we wanted to get heads 75% of
the time and tails 25% of the time?

Plate 6. Using a black,
hard crayon draw a
twenty inch square.
Divide this square into
one inch squares.
Within each one inch
square, draw nothing,
or draw a diagonal
straight line from
corner to corner, or two
crossing straight lines
diagonally from corner
to corner.

Plate 6. Using a black,
hard crayon draw a
twenty inch square.
Divide this square into
one inch squares.
Within each one inch
square, draw nothing,
or draw a diagonal
straight line from
corner to corner, or two
crossing straight lines
diagonally from corner
to corner.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10print.org

3.141592653589793238462643383279502884197169399375105820
974944592307816406286208998628034825342117067982148086
5132823066470938446095505822317253594081284811174502841
0270193852110555964462294895493038196442881097566593344
6128475648233786783165271201909145648566923460348610454
32664821339360726024914127372458700660631558817488152092
096282925409171536436789259036001133053054882046652138
4146951941511609433057270365759591953092186117381932611793
105118548074462379962749567351885752724891227938183011949
129833673362440656643086021394946395224737190702179860
94370277053921717629317675238467481846766940513200056812
71452635608277857713427577896091736371787214684409012249
53430146549585371050792279689258923542019956112129021960
86403441815981362977477130996051870721134999999837297804
995105973173281609631859502445945534690830264252230825
334468503526193118817101000313783875288658753320838142061
71776691473035982534904287554687311595628638823537875937
519577818577805321712268066130019278766111959092164201989
3809525720106548586327886593615338182796823030195203530
185296899577362259941389124972177528347913151557485724245
4150695950829533116861727855889075098381754637464939319

Is this sequence of digits random?

3.141592653589793238462643383279502884197169399375105820
974944592307816406286208998628034825342117067982148086
5132823066470938446095505822317253594081284811174502841
0270193852110555964462294895493038196442881097566593344
6128475648233786783165271201909145648566923460348610454
32664821339360726024914127372458700660631558817488152092
096282925409171536436789259036001133053054882046652138
4146951941511609433057270365759591953092186117381932611793
105118548074462379962749567351885752724891227938183011949
129833673362440656643086021394946395224737190702179860
94370277053921717629317675238467481846766940513200056812
71452635608277857713427577896091736371787214684409012249
53430146549585371050792279689258923542019956112129021960
86403441815981362977477130996051870721134999999837297804
995105973173281609631859502445945534690830264252230825
334468503526193118817101000313783875288658753320838142061
71776691473035982534904287554687311595628638823537875937
519577818577805321712268066130019278766111959092164201989
3809525720106548586327886593615338182796823030195203530
185296899577362259941389124972177528347913151557485724245
4150695950829533116861727855889075098381754637464939319

Most random number generators are
like the digits of π: completely
deterministic, but hard to predict.

These are called Pseudorandom
Number Generators (PRNGs).

void randomSeed(int seed) { ... }

Reset the internal state of Processing’s PRNG
based on the passed-in seed. A given seed will
always produce the same sequence of random
numbers.

Pseudorandom number generators
are a double-edged sword.

The good: we can always “replay” a
sequence of pseudorandom numbers.

The bad: pseudorandom numbers are
not actually random.

Keno

In April 1994, Daniel Corriveau won $620,000 CAD
playing keno. He picked 19 of the 20 winning
numbers three times in a row. Corriveau claims he
used a computer to discern a pattern in the
sequence of numbers, based on chaos theory.
However, it was later found that the sequence was
easy to predict because the casino was using an
inadequate electronic pseudorandom number
generator. In fact, the keno machine was reset every
morning with the same seed number, resulting in the
same sequence of numbers being generated.
Corriveau received his winnings after investigators
cleared him of any wrongdoing.

en.wikipedia.org/wiki/Montreal_Casino

Partial solutions:

1. Set an initial seed based on
the current time.

3. Generate random numbers
continuously, not just when
needed.

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-casinos-no-fix/

Ronald Dale Harris is a computer programmer
who worked for the Nevada Gaming Control
Board in the early 1990s and was responsible
for finding flaws and gaffes in software that
runs computerized casino games. Harris took
advantage of his expertise, reputation and
access to source code to illegally modify
certain slot machines to pay out large sums of
money when a specific sequence and number
of coins were inserted.

https://en.wikipedia.org/wiki/Ronald_Dale_Harris

https://en.wikipedia.org/wiki/Computer_programmer
https://en.wikipedia.org/wiki/Nevada_Gaming_Control_Board
https://en.wikipedia.org/wiki/Nevada_Gaming_Control_Board
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Casino_games
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Slot_machine

Modern cryptographic protocols often require
frequent generation of random quantities.
Cryptographic attacks that subvert, or exploit
weaknesses in, this process are known as
random number generator attacks.

https://en.wikipedia.org/wiki/Random_number_generator_attack

https://en.wikipedia.org/wiki/Cryptographic_protocol

Enigma
Machine

Transport Layer Security (TLS/SSL)

Early versions of Netscape's Secure
Socket Layer (SSL) encryption protocol
used pseudo-random quantities derived
from a PRNG seeded with three variable
values: the time of day, the process ID,
and the parent process ID.

https://en.wikipedia.org/wiki/Netscape_Communications_Corporation
https://en.wikipedia.org/wiki/Secure_Socket_Layer
https://en.wikipedia.org/wiki/Secure_Socket_Layer

Early versions of Netscape's Secure
Socket Layer (SSL) encryption protocol
used pseudo-random quantities derived
from a PRNG seeded with three variable
values: the time of day, the process ID,
and the parent process ID.

…The problem in the
running code was
discovered in 1995
by Ian Goldberg and
David Wagner…

https://en.wikipedia.org/wiki/Netscape_Communications_Corporation
https://en.wikipedia.org/wiki/Secure_Socket_Layer
https://en.wikipedia.org/wiki/Secure_Socket_Layer

Early versions of Netscape's Secure
Socket Layer (SSL) encryption protocol
used pseudo-random quantities derived
from a PRNG seeded with three variable
values: the time of day, the process ID,
and the parent process ID.

…The problem in the
running code was
discovered in 1995
by Ian Goldberg and
David Wagner…

https://en.wikipedia.org/wiki/Netscape_Communications_Corporation
https://en.wikipedia.org/wiki/Secure_Socket_Layer
https://en.wikipedia.org/wiki/Secure_Socket_Layer

https://arstechnica.com/security/2014/01/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/

The U.S. National Institute of Standards and Technology
has published a collection of “deterministic random bit
generators” it recommends as NIST Special Publication
800-90. One of the generators, Dual_EC_DRBG, was
favoured by the National Security Agency.

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/National_Security_Agency

The U.S. National Institute of Standards and Technology
has published a collection of “deterministic random bit
generators” it recommends as NIST Special Publication
800-90. One of the generators, Dual_EC_DRBG, was
favoured by the National Security Agency.

In 2013, Reuters reported that documents released by
Edward Snowden indicated that the NSA had paid RSA
Security $10 million to make Dual_EC_DRBG the default
in their encryption software, and raised further concerns
that the algorithm might contain a backdoor for the NSA.

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Edward_Snowden
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/RSA_Security
https://en.wikipedia.org/wiki/RSA_Security

• Understand how to use random() to
generate unpredictable behaviour in
Processing sketches.

• Understand how to use randomSeed() to
control the generation of pseudorandom
numbers.

• Understand the difference between random
numbers and pseudorandom numbers.

