

CS 106 Winter 2017

Assignment 05: User Interfaces

Due: Friday, February 8th, 11:59pm

This assignment about “User Interfaces”. This topic includes Direct Manipulation and

ControlP5 and was covered in class on the week of February 4th. If you need to refresh yourself,

review the slides that were presented in class and the demo code examples that were provided.

They are both on LEARN.

This question uses both ControlP5 and Direct Manipulation. You place numbers at random locations on the

sketch window. The users task is to arrange the numbers in order from left to right. See the YouTube video.
https://youtu.be/mcXc8TUQOSs

The original screen may look like the following:

After you arrange the numbers in order from left to right it may look like the following.

https://www.student.cs.uwaterloo.ca/~cs106/Winter2017/
https://www.student.cs.uwaterloo.ca/~cs106/Winter2017/
https://youtu.be/mcXc8TUQOSs

To begin, load the provided starter code A05Q01. You'll notice that the A05Q01 sketch contains two tabs. The

first is the main sketch program, which has just a bit of code written for you. The second is a helper class

called Word, which holds one word and knows how to measure the rectangle that the word will be drawn

inside of (its "tile"). Read through the class, and try to get some sense of how to use the features that are

provided (and what features you might add to it). With that starter code, we suggest you proceed as follows:

1. Add the ControlP5 library to the sketch. You'll need the import directive, a global variable, and a

statement that initializes the global variable inside of setup(). Note that the BusyBox sample sketch

demonstrates the use of ControlP5.

2. When your program starts it should read in the text file Numbers.txt (i.e. loadStrings()). Save the

array returned by loadStrings() in a global variable.

3. There is a “Load” button. Pressing the button causes a random line to be chosen as the current line

(i.e. it will be either the first line, or the second line, or the third line). That line needs to be broken

apart so that each word is in an array (i.e. splitTokens()). After doing splitTokens() you will have a

global array of type String with the elements {“one”, “two”, “three”, “four”, “five”}, or {“two”,

“four”, “six”, “eight”, “ten”}, or {“zero”, “one”, “two”, “three”, “four”, “five”, “six”}.

4. Add a global variable to the sketch to hold an array of the Word objects corresponding to the tiles of

the numbers from the current line that we are using (i.e. {“one”, “two”, “three”, “four”, “five”}, or

{“two”, “four”, “six”, “eight”, “ten”}, or {“zero”, “one”, “two”, “three”, “four”, “five”,

“six”} . When the sketch starts, the array should be initialized to a new array with zero elements in it.

See the DirectManipCircleArray sample sketch for inspiration. Then when the user presses

“Load” the array of Word objects gets filled with the words from the current line.

5. Add code to draw all the Words in the array. This will certainly involve a loop in the

main draw() function. As for drawing each individual Word, you can put all the code for that

in draw() if you want, but a more elegant approach is to add a new draw() method to

the Word class and then call that method from the sketch's main draw() function. (You won't be able

to see this working at first, because you need to populate the sketch with some words. That'll happen

in the next step.) The Word class gives you the (x, y) at which to draw a magnet's text, and it provides

helper methods to allow you to figure out the rectangle to draw around the word.

6. Add mousePressed(), mouseDragged(), and mouseReleased() hooks to the sketch that

support direct manipulation of all number tiles currently visible. Make sure to hit test the tiles in the

opposite order that you draw them. You may want to implement hit testing as a method inside

the Word class. Again, the DirectManipCircleArray sample sketch could be a useful source of

inspiration for this step.

7. Put a message at the bottom of the screen to indicate whether the numbers are in order from left to

right.

8. Put a “Quit” button. If the user presses “Quit” the program ends (see the quit() function).

one two three four five

two four six eight ten

zero one two three four five six

Requirements and Grading

QUESTION ONE: (14 marks)

[10 marks] Correctness

● The sketch must meet the following requirements:

○ The “Load” button must load a line of words/numbers and create an array of

Word objects.

○ The words/numbers must display at random locations on the sketch window.

○ The user must be able to move the words/numbers using Direct Manipulation.

○ The text at the bottom of the sketch window must indicate whether the

words/numbers are in order from left to right.

○ The “Quit” button must end the program.

 [2 marks] Coding Style

● Comment your code appropriately. Avoid superfluous comments.

● Correctly and consistently indent your code blocks.

● Use correct inline spacing in function calls, function definitions, and variable declaration

and assignment.

● Use good line spacing to chunk sections of your code.

● Pay special attention to inline spacing for your conditional statements

● One or more marks may be deducted for solutions that have obvious inefficiencies.

● Variables that are declared or assigned, but not used.

● Unnecessarily repeating the same code in multiple places.

 [2 marks] Visual Design and Creativity

● Higher marks will be given to sketches with extra details for creativity and artistic appeal.

Submitting

Create a folder “A05_username”, but replace “username” with your UW id. So if your email is

“jac926@edu.uwaterloo.ca” you would create a folder “A05_ jac926”.

SAVE your sketches in that folder as “A05Q01_username”. Again, replace username with your

UW id.

Zip your “A05_username” folder (with “username” replaced by your UW id) and submit it the

correct assignment dropbox.

It is your responsibility to submit to the correct dropbox with the correct files before the

deadline. Otherwise you will have marks deducted.

Academic Integrity

All assignments in CS106 are done individually. Group work and sharing of code is not allowed.

Detecting Plagiarism:

 We monitor Reddit, File Trading Sites, past year CS106 assignments, etc.

 We use Measure Of Software Similarity (MOSS)

- automatic system for determining the similarity of code

Discipline

Discipline (Policy 71)

- https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-
71

https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-71
https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-71

