
CS106 W19 | Lab 8: Randomness and Noise | Page 1 of 5 

 

CS 106 Winter 2018 
 

Lab 08: Randomness and Noise 

 

Due: Wednesday, March 13th, 11:59pm 

 

SAVE each sketch as “L08Q01”, “L08Q02, and L08Q03.  

 

QUESTION ONE: Coin Flipping 

In the demo code there is an example coinFlip_newGame.pde.  It flips a coin 8 times and 
shows the results of either Heads or Tails.  We went over this code in class.  It uses a 
function playGame() which is in a separate tab in Processing.  You are to write a variation of 
coinFlips_newGame to flip a coin 100,000,000 times and show the resulting count of the 
number of Heads and the Number of Tails, as well as an image of the “winner”.   

Use coinFlips_newGame as the starter code.  You need to rewrite the function playGame(). 

Your result must look similar to the images shown below. 

      

       

Note: To format a number to contain commas we can use the nfc() function. 

For example,  

 text(nfc(headsCount), 10, 30); 

prints the variable headsCount to the sketch window with commas as appropriate. 

 

  

https://www.student.cs.uwaterloo.ca/~cs106/Winter2018/
https://www.student.cs.uwaterloo.ca/~cs106/Winter2018/


CS106 W19 | Lab 8: Randomness and Noise | Page 2 of 5 

 

 

 

QUESTION Two: Coin Flipping with Bias 

 

Modify your code in Question One above in two ways.   

You are to include a ControlP5 slider to control the bias for the probability of each outcome 
being a Head.  The slide goes from 20% to 80%.  If the slider is at the left then then 20% of 
the outcomes, on average, are Heads and 80%, on average, are Tails. 

You are to include another ControlP5 slider to control the number of plays which can vary 
from 10 to 100,000,000.  If the slider is at the left then each play is 10 flips of the coin.  If the 
slider is at the right then each play is 100,000,000 flips of the coin. 

You may need to remind yourself about ControlP5 by looking at the lecture 05 slides and by 
looking at the slider in busyBox.pde demo code from the week we did ControlP5. 

Screen shots are shown below. 

A video is at: https://youtu.be/szw_jO0RzzQ 

 

      

 

 

 

 

 

 

 

https://youtu.be/szw_jO0RzzQ


CS106 W19 | Lab 8: Randomness and Noise | Page 3 of 5 

QUESTION THREE: Driving the noise function 

 

 

 

 

 

Create a simple driving game in which the road is procedurally generated using (the one-dimensional version 

of) the noise() function. Follow these steps: 

1. Create a sketch of size 300×600. In the draw() function, give it a green background. 

2. Now draw a horizontal one-pixel-wide light grey line in every row of pixels in the sketch. Make the 

line 60 pixels long. Use the one-dimensional noise() function to choose the X position of the 

midpoint of the line, giving it the Y coordinate of the line as input. That way, the shape of the road is 



CS106 W19 | Lab 8: Randomness and Noise | Page 4 of 5 

fully determined by noise. The noise() function produces values between 0 and 1; map that to the 

largest possible range of Xpositions in the sketch window for which no part of the road moves off-

screen. 

3. If you do this, you'll probably see a "road" that looks something like this:  

 

 

 

 

The problem is that you're taking values of the noise() function that are spaced too far apart, and 

that are therefore changing too fast. To compensate, define a global floating-point constant that acts as 

a scaling factor for the Y values you pass into noise(). Experiment with values of that variable until 

you get a road that's the right "twistiness" for a driving game. 

4. Now let's make the road scroll down the screen. Define a global variable that controls the vertical 

translation of the game. Before passing Y values into the noise() function, add the current value of 

this global variable to them. Then, at the end of every frame, add a small amount to the translation 

amount. If you do this right, the road will scroll downward forever, with new segments of road always 

coming in from the top of the screen. Adjust the per-frame translation amount so that the road sweeps 

by at a reasonable rate for a driving game. 

5. Let's add a car to the sketch. Draw a small vertically oriented rectangle with its centre 40 pixels from 

the bottom of the sketch window. When the sketch starts, set the X position of the car so that it sits in 

the centre of the road (use a global variable to remember the car's X position). The car will always 

remain at this Y position in the sketch, and the road will scroll past it. 

6. Add the ability to control the X position of the car via the left and right arrow keys. We want the car to 

respond every frame a key is pressed without worrying about key repeat, and so 

the keyPressed() hook function isn't the best way to go. Instead, we'll use a style of key event 

handling you saw in CS 105 but haven't used this term. Add code like this to the draw() function: 

 

 

 

 

7. Finally, add code to detect whether the car has gone off the road. We'll say that the car is on the road 

as long as the X coordinate of its centre lies somewhere within the line segment of the road at 

its Y position. Every frame, check whether the car has gone off the road. If it has, stop the road from 

scrolling. When the road stops, you know the game is over. 

The entire sketch can be written with fewer than 50 lines of code, not counting comments. 

  if (keyCode == LEFT) { 

    // Change car X location here. 

  } else if (keyCode == RIGHT) { 

    // Change car X location here. 

  } 

} 



CS106 W19 | Lab 8: Randomness and Noise | Page 5 of 5 

 

Submission 
Submit all sketch directories from this lab as one ZIP file called L08.zip to the lab dropbox on 
Learn.  

 

It is your responsibility to submit to the correct dropbox with the correct files before the 
deadline. Otherwise you will receive a mark of 0. 

 

 


	CS 106 Winter 2018
	Lab 08: Randomness and Noise
	Submission


