Video and Libraries

- Libraries (LP Chapter 12)
- Video Processing and Computer Vision (LP Chapter 16)
Libraries

- Libraries are extensions to the "core" Processing language.
- Libraries must be installed ("added") before using them.
“Adding” the Video Library

<table>
<thead>
<tr>
<th>Status</th>
<th>Name</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>GL Video</td>
<td>Gottfried Haider</td>
</tr>
<tr>
<td></td>
<td>IP Capture</td>
<td>Stefano "singintime" Baldan</td>
</tr>
<tr>
<td></td>
<td>Syphon</td>
<td>Andres Colubri</td>
</tr>
<tr>
<td></td>
<td>Video</td>
<td>The Processing Foundation</td>
</tr>
<tr>
<td></td>
<td>Video Export</td>
<td>Abe Pazos</td>
</tr>
</tbody>
</table>

![Contribution Manager](image)
“Standard” Libraries and Contributed Libraries

- https://processing.org/reference/libraries/

Libraries. Extend Processing beyond graphics and images into audio, video, and communication with other devices.

The following libraries are created by the Processing Foundation. The PDF Export, Network, Serial, and DXF Export libraries are distributed with Processing. The Video and Sound libraries need to be downloaded through the Library Manager. Select “Add Library...” from the “Import Library...” submenu within the Sketch menu.

- **PDF Export**
 Create PDF files. These vector graphics files can be scaled to any size and printed at high resolutions.

- **Serial**
 Send data between Processing and external hardware through serial communication (RS-232).

- **Video**
 Read images from a camera, play movie files, and create movies.

- **Sound**
 Playback audio files, audio input, synthesize sound, and effects.

- **DXF Export**
 Create DXF files to save geometry for loading into other programs. It works with triangle-based graphics including polygons, boxes, and spheres.

- **Hardware I/O**
 Access peripherals on the Raspberry Pi and other Linux-based computers

Contributions

Contributed Libraries must be downloaded individually. Select “Add Library...” from the “Import Library...” submenu within the Sketch menu. Not all available libraries have been converted to show up in “Add Library...”. If a library isn’t there, it will need to be installed manually. Follow the How to Install a Contributed Library instructions on the Processing Wiki for more information.

Contributed libraries are developed, documented, and maintained by members of the Processing community. For feedback and support, please post to the Forum. For development discussions post to the Create & Announce Libraries topic. Instructions for creating your own library are on the Processing GitHub site.
Using a Library

- After a library is installed ("added"), you use it in a sketch by "importing" it

 e.g.

 import processing.video.*

- Every library has a reference explaining how to use it
 (some libraries have better references than others)
Using the Video Library to Capture Live Camera

1) Import the video library into your sketch

   ```java
   import processing.video.*
   ```

2) Declare a global `Capture` object

   ```java
   Capture camera;
   ```

3) Create the `Capture` object in `setup()`

   ```java
   camera = new Capture(this, 320, 240);
   ```

4) Start the Capture object

   ```java
   camera.start();
   ```

5) Read a frame of video when the camera is available

   ```java
   void captureEvent(Capture cam) {
     cam.read();
   }
   ```
Video and Libraries

import processing.video.*;

Capture camera;

void setup() {
 size(320, 240);
 camera = new Capture(this, 320, 240);
 camera.start();
}

void draw() {
 image(camera, 0, 0);
}

void captureEvent(Capture cam) {
 cam.read();
}

Uses the "default" camera.
Capturing from other cameras

- Ask Capture what cameras are available

 // list all available capture 'devices'
 // to the console to find your camera.
 String[] devices = Capture.list();
 for (int i = 0; i < devices.length; i++) {
 println(i, devices[i]);
 }

- Create a new capture object using a specific camera

 // e.g. open camera device ‘3’
 camera = new Capture(this, 320, 240, devices[3]);
 camera.start();
import processing.video.*;

Capture cam;

void setup() {
 size(320, 240);
 cam = new Capture(this, 320, 240);
 cam.start();
}

void draw() {
 image(cam, 0, 0);
}

void captureEvent(Capture cam) {
 cam.read();
}
videopainterly

using `.get(x, y)` with video frame

```java
for (int i = 0; i < 250; i++) {
    int x = int(random(0, width - 1));
    int y = int(random(0, height - 1));

    color pixelColour = cam.get(x, y);
    fill(pixelColour, 200);

    int size = int(random(1, 5));
    ellipse(x, y, size, size);
}
```
// loop through all grid positions
for (float x = maxSize / 2; x < width; x += maxSize) {
 for (float y = maxSize / 2; y < height; y += maxSize) {

 // get the colour at the corresponding pixel
 int vx = int(map(x, 0, width - 1, 0, cam.width - 1));
 int vy = int(map(y, 0, height - 1, 0, cam.height - 1));
 color pixelColour = cam.get(vx, vy);

 // get brightness and convert it to a size
 float b = brightness(pixelColour);
 float s = map(b, 0, 255, 0, maxSize * 1.5);

 fill(255);
 ellipse(x, y, s, s);
 }
}
if (cam.available()) {
 cam.read();
 image(cam, 0, 0);

 loadPixels();
 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int i = x + y * width;
 color pixelColour = pixels[i];
 float r = red(pixelColour);
 float g = green(pixelColour);
 float b = blue(pixelColour);

 // image processing here
 pixels[i] = color(r, g, b);
 }
 }
 updatePixels();
}
Computer Vision

- "Computer vision" refers to a broad class of algorithms that allow computers to make intelligent assertions about digital images and video (Levin, 2006)

- Computers that can "see"
- Using the camera as a "sensor"
Tammy Hunter
608 4th Street S.W.
Independence, IA 50644
What a Mouse "Sees"

from A Simple Method for Measuring End-to-end Latency using an Optical Mouse (Casiez et al. 2015)
https://youtu.be/XB_mxGTgWvQ?t=46s
The Kinect Effect

https://youtu.be/oq98_35sQko
VideoPlace (Krueger, 1970s)
VIDEOPLACE (Krueger, 1985)
- http://youtu.be/d4DU1eXSEpk
VIDEOPLACE Mini-documentary (1988)
- https://youtu.be/dmmxVA5xhuo?t=4m5s
A Simple Computer Vision Algorithm

for each video frame:
 identify a "special" pixel based on some criteria
 use that pixel's location to control the computer

- This is just a special kind of array operation, very similar to finding the largest element in an array ...
Array Operation: Find Largest Element Index

// find the index of the largest element
// (assuming myArray has at least 1 element)
int indexOfLargest = 0;
for (int i = 1; i < myArray.length; i++) {
 if (myArray[i] > myArray[indexOfLargest]) {
 indexOfLargest = i;
 }
}
println("index of largest:", indexOfLargest);
println("largest:", myArray[indexOfLargest]);
int brightestX = 0;
int brightestY = 0;
float brightest = 0;

for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int i = x + y * width;
 float b = brightness(pixels[i]);

 if (b > brightest && b > 200) {
 brightest = b;
 brightestX = x;
 brightestY = y;
 }
 }
}
int closestX = 0;
int closestY = 0;
float closestDist = 360;

for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int i = x + y * width;

 float b = brightness(pixels[i]);
 float s = saturation(pixels[i]);

 float h = hue(pixels[i]);
 float d = abs(trackHue - h);

 if (d < closestDist && b > 50 && s > 50) {
 closestDist = d;
 closestX = x;
 closestY = y;
 }
 }
}
Introduction to Computer Vision
https://youtu.be/h8tk0hmWB44
Excellent Introduction

http://www.flong.com/texts/essays/essay_cvad/

Computer Vision for Artists and Designers: Pedagogic Tools and Techniques for Novice Programmers

This article also appears in the following publications:

ABSTRACT

"Computer vision" refers to a broad class of algorithms that allow computers to make intelligent assertions about digital images and video. Historically, the creation of computer vision systems has been regarded as the exclusive domain of expert researchers and engineers in the fields of signal processing and artificial intelligence. Likewise, the scope of application development for computer vision technologies, perhaps constrained by conventional structures for research funding, has generally been limited to military and law-enforcement purposes. Recently, however, improvements in software development tools for student programmers and interactive-media artists — in
Using the Video Library to Play Movies

0) Add a video ("movie") to your sketch’s data folder.
1) Import the video library into your sketch

   ```
   import processing.video.*
   ```

2) Declare a global Movie object

   ```
   Movie mov;
   ```

3) Create the Movie object in setup()

   ```
   mov = new Movie(this, "flyboard.mp4");
   ```

4) Start playback

   ```
   mov.play();
   ```

5) Read a frame of video when the camera is available

   ```
   void movieEvent(Movie m) {
     m.read();
   }
   ```
import processing.video.*;
Movie mov;

void setup() {
 size(640, 360);
 mov = new Movie(this, "flyboard.mp4");
 mov.play();
}

void draw() {
 image(mov, 0, 0);
}

// Called every time a new frame is available to read
void movieEvent(Movie m) {
 m.read();
}
Detect when movie is done playing

```java
void draw() {
  image(mov, 0, 0);

  if (mov.time() >= mov.duration()) {
    background(255, 0, 0);
  }
}
```
movie (slit demo)

```
int x = 0;

void draw() {
    image(mov, x, 0);
}

void movieEvent(Movie m) {
    m.read();
    x += 3;
}
```
void draw() {
 if (mov.available()) {
 mov.read();
 // A new time position is calculated
 // using the current mouse location:
 float f = map(mouseX, 0, width, 0, 1);
 float t = mov.duration() * f;
 mov.play();
 mov.jump(t);
 mov.pause();
 }
 image(mov, 0, 0);
}
Movie Methods

- see reference

<table>
<thead>
<tr>
<th>Methods</th>
<th>frameRate()</th>
<th>Sets the target frame rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed()</td>
<td></td>
<td>Sets the relative playback speed</td>
</tr>
<tr>
<td>duration()</td>
<td></td>
<td>Returns length of movie in seconds</td>
</tr>
<tr>
<td>time()</td>
<td></td>
<td>Returns location of playback head in units of seconds</td>
</tr>
<tr>
<td>jump()</td>
<td></td>
<td>Jumps to a specific location</td>
</tr>
<tr>
<td>available()</td>
<td></td>
<td>Returns "true" when a new movie frame is available to read.</td>
</tr>
<tr>
<td>play()</td>
<td></td>
<td>Plays movie one time and stops at the last frame</td>
</tr>
<tr>
<td>loop()</td>
<td></td>
<td>Plays a movie continuously, restarting it when it's over.</td>
</tr>
<tr>
<td>noLoop()</td>
<td></td>
<td>Stops the movie from looping</td>
</tr>
<tr>
<td>pause()</td>
<td></td>
<td>Pauses the movie</td>
</tr>
<tr>
<td>stop()</td>
<td></td>
<td>Stops the movie</td>
</tr>
<tr>
<td>read()</td>
<td></td>
<td>Reads the current frame</td>
</tr>
</tbody>
</table>
Using the Sound Library to Play Sounds

0) Add a sound file to your sketch’s data folder.

1) Import the sound library into your sketch
   ```java
   import processing.sound.*
   ```

2) Declare a global `Sound` object
   ```java
   Sound honk;
   ```

3) Create the `Sound` object in setup()
   ```java
   honk = new Sound(this, "honk.wav");
   ```

4) Play sound when you want
   ```java
   honk.play();
   ```
import processing.sound.*;

SoundFile sound;

void setup() {
 // make sure file is in data sketch directory
 sound = new SoundFile(this, "honk.wav");
}

void mousePressed() {
 sound.play();
}
sounds

SoundFile honk;
SoundFile horn;

void setup() {
 // make sure file is in data sketch directory
 honk = new SoundFile(this, "honk.wav");
 horn = new SoundFile(this, "horn.wav");
}

void mousePressed() {
 if (mouseX < 50) {
 honk.play();
 } else {
 horn.play();
 }
}
Sound Examples

- Sound
 - Analysis
 - Demos
 - Envelopes
 - Keyboard
 - Sampler
 - SineCluster
 - Spectrum
 - Effects
 - Filter
 - FreeVerb
 - Variable_Delay
 - IO
 - Noise
 - Oscillators
 - Soundfile
 - Sample
More Libraries

- There are 100s of Processing libraries
 - https://processing.org/reference/libraries/

Some of my favourites
- Ani for animating variables
- Signal Filter to filter noisy values
- https://evaluate.uwaterloo.ca/

- Prof. Kevin Harrigan
 - questions about the instructor are about me

 not your lab TAs, ISAs or other course staff

 - try to evaluate me and CS 105 independently