
Module 09
CS 106 Winter 2019

ndonmRseas
nsenRdamso
esdnRsaonm
nsnasemdRo
emnosandsR
Randomness
dasnnmseoR
anmdRonsse
sRedmnaons
nndaoRssme

“Maybe the greatest novelty here is
the ability of the computer not only
to follow any complex rule of
organization but also to introduce
an exactly calculated dose of
randomness.”

— E.H. Gombrich

Georg Nees, Gravel Stones (1971)

Generative Art

Athanasius Kircher (1602–1680)

Arca
Musarithmica

Sol Lewitt (1928–2007)

Plate 1. Within a twenty inch square
area, using a black, hard crayon,
draw ten thousand freehand lines, of
any length, at random.

Plate 2. Within a twenty inch square
area, using a black, hard crayon,
draw ten thousand straight lines, of
any length, at random.

Plate 3. Using a black, hard crayon
draw a straight line of any
length. From any point on that line
draw another line perpendicular to
the first. From any point on the
second line draw another line
perpendicular to that line. Repeat
this procedure.

Plate 4. Using a black, hard crayon, draw
four contiguous ten inch squares, forming
one twenty inch square, divided into
quarters. Within the first square (upper left)
draw one line, one inch long. Within the
second square (upper right) draw ten lines,
each one inch long. Within the third square
(lower left) draw one hundred lines, each
one inch long. Within the fourth square
(lower right) draw one thousand lines, each
one inch long. All lines should be drawn at
random, and straight.

Plate 5. Using a black, hard crayon draw a
twenty inch square. Divide this square into
one inch squares. Within each one inch
square, draw nothing or a freehand line or
lines.

Plate 5. Using a black, hard crayon draw a twenty inch square. Divide this square into one
inch squares. Within each one inch square, draw nothing or a freehand line or lines.

float random(float lo, float hi) { ... }

Return a random number at least as big as lo but
smaller than hi.

Get a different answer every time!

float random(float lo, float hi) { ... }

Return a random number at least as big as lo but
smaller than hi.

Get a different answer every time!

float random(float hi)

{

 return random(0, hi);

}

Random integers

int(random(N))

Choose a random integer from the set 0, 1,
…

Random integers

int(random(N))

Choose a random integer from the set 0, 1,
… N-1

(The int() function always rounds down)

Flipping a coin
Write a function that simulates flipping a fair
coin.

Flipping a biased coin
What if we wanted to get heads 75% of the
time and tails 25% of the time?

Plate 6. Using a black,
hard crayon draw a twenty
inch square. Divide this
square into one inch
squares. Within each one
inch square, draw nothing,
or draw a diagonal straight
line from corner to corner,
or two crossing straight
lines diagonally from
corner to corner.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

10print.org

3.141592653589793238462643383279502884197169399375105820974944
59230781640628620899862803482534211706798214808651328230664709
38446095505822317253594081284811174502841027019385211055596446
22948954930381964428810975665933446128475648233786783165271201
90914564856692346034861045432664821339360726024914127372458700
66063155881748815209209628292540917153643678925903600113305305
48820466521384146951941511609433057270365759591953092186117381
93261179310511854807446237996274956735188575272489122793818301
19491298336733624406566430860213949463952247371907021798609437
02770539217176293176752384674818467669405132000568127145263560
82778577134275778960917363717872146844090122495343014654958537
10507922796892589235420199561121290219608640344181598136297747
71309960518707211349999998372978049951059731732816096318595024
45945534690830264252230825334468503526193118817101000313783875
28865875332083814206171776691473035982534904287554687311595628
63882353787593751957781857780532171226806613001927876611195909
21642019893809525720106548586327886593615338182796823030195203
53018529689957736225994138912497217752834791315155748572424541
50695950829533116861727855889075098381754637464939319

Most random number generators are like

the digits of π: completely deterministic, but
hard to predict.

These are called Pseudorandom Number

Generators (PRNGs).

void randomSeed(int seed) { ... }

Reset the internal state of Processing’s PRNG based
on the passed-in seed. A given seed will always
produce the same sequence of answers to a given
sequence of calls to random().

Pseudorandom number generators are a

double-edged sword.

The good: we can always “replay” a
sequence of pseudorandom numbers.

The bad: pseudorandom numbers are not

actually random.

Keno

In April 1994, Daniel Corriveau won $620,000 CAD playing
keno. He picked 19 of the 20 winning numbers three times
in a row. Corriveau claims he used a computer to discern a
pattern in the sequence of numbers, based on chaos
theory. However, it was later found that the sequence was
easy to predict because the casino was using an
inadequate electronic pseudorandom number generator. In
fact, the keno machine was reset every morning with the
same seed number, resulting in the same sequence of
numbers being generated. Corriveau received his winnings
after investigators cleared him of any wrongdoing.

en.wikipedia.org/wiki/Montreal_Casino

Partial solutions:

1. Set an initial seed based on the

current time.

3. Generate random numbers

continuously, not just when

needed.

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-casinos-no-fix/

Modern cryptographic protocols often require
frequent generation of random quantities.
Cryptographic attacks that subvert, or exploit
weaknesses in, this process are known as random
number generator attacks.

https://en.wikipedia.org/wiki/Random_number_generator_attack

https://en.wikipedia.org/wiki/Cryptographic_protocol

Enigma
Machine

Transport Layer Security (TLS/SSL)

• Understand how to use random() to generate
unpredictable behaviour in Processing sketches.

• Understand how to use randomSeed() to control
the generation of pseudorandom numbers.

• Understand the difference between random
numbers and pseudorandom numbers.

Goals

