
Module 02

Containers
(Arrays, Records, Strings)

1

Containers

A container is a data element that we treat both

as one whole, and as many parts. Like an array.

2

3

How many boxes does it take to run a business?

How many arrays does it take to code a program?

Records

4

5

(Racing) →

Before

X

Then:

After

Now:

Disqualification!

Recall CS 105 circleracers

Records

• A container where elements are accessed by name.

Arrays access them by number.

• A way to group variables into folders.

• Common case: array of records. This will be the

circleracer trick.

6

7

let arr1 = [];

let arr2 = [17, 3];

let arr3 = [5];

arr2[1] = arr3[0];

let n = arr2.length;

let rec1 = {};

let rec2 = {a: 17, b: 3};

let rec3 = {x: 5};

rec2.b = rec3.x;

// no equivalent

Building blocks: array, record

8

let rec1 = {};

let rec2 = {a: 17, b: 3};

let rec3 = {x: 5};

rec2.b = rec3.x;

Building blocks: array, record
No requirement to

learn/use this syntax

in 106. But you will

see it in starter code

and in “print” output.

Need to know:

empty record •

write to b •

read from x •

9

arr2[1] = arr3[0];

let n = arr2.length;

rec2.b = rec3.x;

// no equivalent

Building blocks: array, record

Overwrites element

if it was already there;

adds it there otherwise.

good for looping

with zero, defines front/back

• we don’t loop records in 106

• record has no order

at position 1 with name b|

Which one prints “Containers?”

10

let r = {};
r.CourseSubject = "CS";
r.CourseNumber = 106;
r.Module = "Containers";

A) print({Module: r});

B) print({}.Module);

C) print(r.Module);

D) print(r[CourseNumber + 1]);

E) print(r[r.length - 1]);

11

Building records

Similar idea to using the color() function. It packages

the R, G, B values that you give it into a container.

Let’s name some colours.

backdrop
standardText
catchyText

lightMode.
lightMode.
lightMode.

backdrop
standardText
catchyText

darkMode.
darkMode.
darkMode.

12

let backdrop;

let standardText;

let catchyText;

function initColors() {

backdrop = color(255);

standardText = color(0);

catchyText = color(0, 0, 255);

}

function setup() {

createCanvas(200, 100);

initColors();

}

let lightMode;

let darkMode;

let curMode;

function initColors() {

lightMode = {};

lightMode.backdrop = color(255);

lightMode.standardText = color(0);

lightMode.catchyText = color(0, 0, 255);

darkMode = {};

darkMode.backdrop = color(0);

darkMode.standardText = color(255);

darkMode.catchyText = color(0, 255, 0);

}

function setup() {

createCanvas(200, 100);

initColors();

curMode = lightMode;

}

13

function draw() {
background(backdrop);

fill(standardText);
text("Good day to you,", 5, 50);

fill(catchyText);
text("friend!", 99, 50);

}

function keyTyped() {
if (random(0,1) > 0.5) {

curMode = lightMode;
} else {

curMode = darkMode;
}

}

function draw() {
background(curMode.backdrop);

fill(curMode.standardText);
text("Good day to you,", 5, 50);

fill(curMode.catchyText);
text("friend!", 99, 50);

}

14

Recall from CS 105:

New @106:

Add features.

See duplicate code.

Fix with records.

circleracers: First New Feature

• When the user types a number on the keyboard (0–9)

the racer in that lane is disqualified

(and also, so we can see what’s happening)

• They go slower

• They reset to the left when they reach the right

• They start with random progress…it’s a relative race

15

circleracers v2: Starting Point

All the “so we can see” features are done.

16

function keyTyped() {
… disqualifyAt(correctIndex);

}

function disqualifyAt(i) {
// we will implement
print("racer at position " + i + " to be removed");

}

// modifies arr to remove an item that was initially in arr[i];
// shifts later elements forward, and reduces arr.length, by one
function removeElementAt(arr, i) { … }

circleracers: problem

• Naïve: just delete from the xs. Remaining racers get
lower number after deletion.

• Fix: track the labels in a second array. Remove
disqualified racer info from both arrays.

• Next feature: each racer gets a random colour.

let x = []; let label = []; let r = []; let g = []; let b = [];

• 5 calls to removeElementAt. Each time does “same”
shuffling. Your code repeats.

17

circleracers: solution

18

label x r g b

1 ⋅ ⋅ ⋅ ⋅

2 ⋅ ⋅ ⋅ ⋅

4 ⋅ ⋅ ⋅ ⋅

5 ⋅ ⋅ ⋅ ⋅

6 ⋅ ⋅ ⋅ ⋅

label x r g b

label x r g b

1 ⋅ ⋅ ⋅ ⋅

2 ⋅ ⋅ ⋅ ⋅

4 ⋅ ⋅ ⋅ ⋅

5 ⋅ ⋅ ⋅ ⋅

6 ⋅ ⋅ ⋅ ⋅

Program’s variables:

racer

Program’s variables:

Add, remove, re-order:

Do same on each!

Add, remove, re-order:

Do once!

Objects by Reference

19

Objects by Reference
Arrays and records are examples of:

JavaScript P5 Objects

JavaScript P5 knows they can get big.
Copying big things can make our program slow.

It wants to help us save on copying.
Here is its “solution.” This pill may cause vertigo.

We’ll work through this with arrays.
It’s the same with records.

20

What does this print?

21

let a = 1;

let b = 2;

a = b;

b = 3;

print(a + b);

(A) 3

(B) 4

(C) 5

(D) 6

(E) 7

What does this print?

22

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

(A) 3

(B) 4

(C) 5

(D) 6

(E) 7

Arrays are just values…

let arr1 = [1, 2, 3, 4];
let arr2 = arr1;

// arr is an array, val is a float
function processArray(arr, val) {

...
return arrNew;

}

let arr3 = processArray(arr1, 3.14);

23

…aren’t they?
An array value is really an arrow pointing to the place in
memory where all the array elements are stored. We say
that an array variable is a reference.

24

let i = 17;
let arr = [1, 2, 3, 4];

let a = 1;

let b = 2;

a = b;

b = 3;

25

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

26

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

27

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

28

29

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

30

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

31

let a = [1];

let b = [2];

a = b;

b[0] = 3;

print(a[0] + b[0]);

References
The basic types Number and Boolean are “primitive”:
their values are “naked” and copied around directly.

Object types (including arrays and records) are passed
around by reference (arrows).

32

A) [1, 2, 3, 4]
B) 2
C) [2, 1, 2, 3, 4]
D) [1, 1, 2, 3, 4]
E) Error

What does this print?

33

let arr1 = [1, 2, 3, 4];
let arr2 = [];
arr2[0] = arr1[2];
print(arr1);

Functions on Arrays

34

Recall Array idioms

An idiom is not a single algorithm or line of code. It’s a rough
template that can be customized to a specific situation.

35

for (let i = 0; i < arr.length; i++) {
…
…

}

We can use more than one at once.
We can riff on them.
We should know them, recognize them.

Array functions

Often, a function wraps a case of an idiom.

36

for (let i = 0; i < arr.length; i++) {
…
…

}
return something;

}

function handleWidgets(arr, …) {

 (maybe)

Its parameters and return value (if any) are really given by
the idiom too.

Array idioms
1. Item Consumption

37

// visualize each element as a thin vertical bar
for (let i = 0; i < arr.length; i++) {

line(i, height, i, height - arr[i]);
}

“Do” the same action per element. Action like draw.
Well seen in CS 105.

Array functions
1. Item Consumption

38

function drawBars(arr) {
for (let i = 0; i < arr.length; i++) {

line(i, height, i, height - arr[i]);
}
// no return

}

“Do” the same action per element. Action like draw.

input

array

Array idioms
2. Distillation

“Reduce” the array down to a single value.
Well seen in CS 105.

• Largest element
• Smallest element
• Is X in the array?
• Find the index of X
• Sum of elements
• Average of elements
• Number of positive elements

39

let largest = arr[0];

for (let i = 1; i < arr.length; i++) {
if (arr[i] > largest) {
largest = arr[i];

}
}

Array functions
2. Distillation

“Reduce” the array down to a single value.

40

function largestElement(arr) {
let largest = arr[0];

for (let i = 1; i < arr.length; i++) {
if (arr[i] > largest) {
largest = arr[i];

}
}

return largest;
}

Array idioms
3. Generation

“Conjure” an array from nothing (or a simple value).
Well seen in CS 105.

Example: given an integer n, produce the integer array
[0, 1, 2, …, n-1].

41

let arr = [];
for (let i = 0; i < n; i++) {
arr[i] = i;

}

Array functions
3. Generation

“Conjure” an array from nothing (or a simple value).

42

array

returned

input

value

function upto(n) {
let arr = [];
for (let i = 0; i < n; i++) {
arr[i] = i;

}
return arr;

}

Array idioms
4. Item Transformation

43

“Apply” a smaller transform, across all elements.
May be less familiar.

Example, given a list of contact info, extract just the
phone numbers into a new array.

let phoneNumbers = [];
for (let i = 0; i < contacts.length; i++) {

phoneNumbers[i] = contacts[i].phone;
}

Array functions
4. Item Transformation

44

“Apply” a smaller transform, across all elements.

function getColdCallList(contacts) {
let phoneNumbers = [];
for (let i = 0; i < contacts.length; i++) {

phoneNumbers[i] = contacts[i].phone;
}
return phoneNumbers;

}

array

returned

input

array
maybe of

something

different!

Array functions
4. Item Transformation

45

“Apply” a smaller transform, across all elements.

array

returned

input

array
… of

something

different!

Does not say anything about sizes of the input/output
arrays. The cold-call example happened to be 1:1. But
filtering or expanding functions are common too.

An object+function idiom
5. Parameter Mutation

46

“Work on” the array/record that was passed in.
This is new. And unlike the others.

Example, replace all the a’s with b’s.

function replaceAll(arr, a, b) {
for (let i = 0; i < arr.length; i++) {
if (arr[i] === a) {
arr[i] = b;

}
}

}

An object+function idiom
5. Parameter Mutation

47

“Work on” the array/record that was passed in.

function replaceAll(arr, a, b) {

arr[i] = b;
}

}
}

In this idiom, no

concern for how a

loop works. There

may not be a loop.

Current e.g. it’s “assign to array elements.”
Sometimes it’s adding/removing elements.

No return

Not a global variable

An object+function idiom
5. Parameter Mutation

48

Same truck.

Any truck.

Dot functions

49

Many built-in array functions use an invocation syntax
like this:

print(arr.indexOf(q));

• You won’t write your functions to get called this way.
• You will have to call some built-in functions this way.
• Treat what’s before the dot as an extra parameter.

indexOf takes two parameters

print receives the return of indexOf

A) #1, Item Consumption
B) #2, Distillation
C) #3, Generation
D) #4, Item Transformation
E) #5, Parameter Mutation
F) None

Which idiom is this?

50

Adaptation of Mozilla documentation of the Array slice function.

The function arr.slice(begin, end) returns a shallow copy of a
portion of the array arr, into a new array object, selected
from begin to end (end not included) where begin and end
represent the index of items in that array. The original array will
not be modified.

let animals = ['ant', 'bison', 'camel’,
'duck', 'elephant'];

print(animals.slice(2, 4)); // 'camel','duck'

A) #1, Item Consumption
B) #2, Distillation
C) #3, Generation
D) #4, Item Transformation
E) #5, Parameter Mutation
F) None

Which idiom is this?

51

Fictional documentation of a function.

The function sliceSelectedAnimals(begin, end) modifies the array
in the global variable selectedAnimals. It keeps the items
originally found from begin to end (end not included) where
begin and end represent the index of items in the array.

print(selectedAnimals);
// 'ant','bison','camel','duck','elephant'
sliceSelectedAnimals(2, 4);
print(selectedAnimals); // 'camel','duck'

Built-in array functions
First Group: No mutation, result is returned

52

let a = ['a','b','c','d'];
let b = ['x','y'];

print(a.concat(b)); // a,b,c,d,x,y
print(a.includes('c')); // true
print(a.indexOf('c')); // 2
print(shuffle(a, false)); // e.g. b,a,d,c

let startAt = 2;
let stopBefore = 4;
print(a.slice(startAt, stopBefore)); //c,d

Built-in array functions
Second Group: With mutation, original is modified

53

let a = ['d','c','b','a'];
let extraItem = 'x';

a.push(extraItem); print(a); // d,c,b,a,x
a.pop(); print(a); // d,c,b,a
a.unshift(extraItem); print(a); // x,d,c,b,a
a.shift(); print(a); // d,c,b,a

a.sort(); print(a); // a,b,c,d
a.reverse(); print(a); // d,c,b,a
shuffle(a, true); print(a); // e.g. a,d,c,b

Built-in array functions
An extra: With mutation, original is modified

54

let a = ['d','c','b','a'];
let extraItem = 'x';
let midpoint = 2;

// delete 1 item at midpoint
a.splice(midpoint, 1);
print(a); // d,c,a

// delete 0 items at midpoint and add extraItem
a.splice(midpoint, 0, extraItem);
print(a); // d,c,x,a

Strings
In many programming situations, we want to
deal with blocks of text.

• Text boxes in a web form
• Text drawn to the screen
• Analyzing text documents for patterns

We need a type to hold blocks of text.
JavaScript includes the “String” type to do
exactly this.

55

Literals
To give an explicit string in your program (a literal),
put it in quotes.

let a = 'hello';

let b = 'world';

let c = ' ';

let d = '*';

let e = '';

let f = 'Lorem ipsum dolor sit amet, elit.';

56

… and any quotes will do.

let x = "hello";

print(a===x); // true

img = loadImage("data/bird.png");

print("mouse is pressed");

String literals

57

Literals: special characters

Ernest Lawrence Thayer, Casey at the Bat (1888)
58

Literals: special characters

let singleqt = "\'";

let doubleqt = "\"";

let newline = "\n"; // like return

let dbldagger1 = "\u2021"; // Unicode num for ‡

let dbldagger2 = "‡"; // often paste is fine

let backslash = "\\";

Use the backslash \ to tell JS about upcoming special
characters.

59

https://xkcd.com/1638/60

Special chars: line breaks

let NL = "\n";

let CR = "\r";

let CRNL = "\r\n";

print(NL===CR); // false

let q = ... ; // is q a line break?

if (q===NL || q===CR || q===CRNL) { ... }

How come? History. Sorry.
Wherefore? Browser compatibility. Sorry.

61

// sorry

// preferred, but...

"Strike one!\" the umpire said.";

62

let verse2 = "Close by the sturdy batsman " +
"the ball unheeded sped—\n" +
"\"That ain't my style,\" said Casey. " +
"\"Strike one!\" the umpire said.";

print(verse1===verse2); // true

Literals: + to split long ones

let verse2 = "Close by the sturdy batsman " +
"the ball unheeded sped—\n" +
"\"That ain't my style,\" said Casey. " +
"\"Strike one!\" the umpire said.";

63

Close by the sturdy batsman the ball unheeded sped—

"That ain't my style," said Casey. "Strike one!" the umpire said.

Literals: + to split long ones

Literals: pick your quote

let abbrev1 = 'didn\'t';

let abbrev2 = "didn't" ;

let dialogue1 = 'Now hear, "this!"' ;

let dialogue2 = "Now hear, \"this!\"";

print(abbrev1 ===abbrev2); // true

print(dialogue1===dialogue2); // true

64

Strings are just values

let str1 = "Hello";

let str2 = str1;

function processString(str, num) {

…

}

let str3 = processString(str1, 3.14);

let columns = ["Doric", "Ionic", "Corinthian"];

65

String equality
We often want to compare two strings to see whether they
have the same text. They are values, after all!

if (str1 === str2) {

// the strings have the same text

}

66

let s = "He" ;
print("Hello"); // Hello
print(s + "llo"); // Hello
print("Hello" === (s + "llo")); // true

let n = 2 ;
print(102); // 102
print(n + 100); // 102
print(102 === (n + 100)); // true

67

Concatenation and equality

+ gives LHS then RHS. It concatenates.

Strings are values.
Values don’t care how you got them.

let wd = "hello";

Are Strings just, like, Arrays?
Almost, but not quite.
Strings wish they were arrays of characters, but they aren’t.
Still, your knowledge of arrays will help you.

let wd = ['h','e','l','l','o'];

68

String vs. Array

Strings are containers. Of characters. Almost like arrays.

JS doesn’t have a type for characters.
JS doesn’t have a type for containers either.

Dissecting a string gives length-one strings.

let s = 'abc';

print(s[1] === 'b'); // true

69

a container

of something

that only exists

in our minds

IS

String vs. Array
Strings wish they were arrays of

… well … length-one strings? (Wait, what?)

Even still, your knowledge of arrays will help you.

let w1 = ['a','b','c'];

let len1 = w1.length;

let char1 = w1[2];

let w2 = 'abc';

let len2 = w2.length;

let char2 = w2[2];

70

String vs. Array

let w1 = ['a','b','c'];

let len1 = w1.length;

let char1 = w1[2];

w1.reverse();

let w2 = 'abc';

let len2 = w2.length;

let char2 = w2[2];

w2.reverse();

71

Strings wish they were arrays of
… well … length-one strings? (Wait, what?)

Even still, your knowledge of arrays will help you, to a point.

String vs. Array

let w1 = ['a','b','c'];

let len1 = w1.length;

let char1 = w1[2];

w1[3] = '!';

print(w1); // a,b,c,!

let w2 = 'abc';

let len2 = w2.length;

let char2 = w2[2];

w2[3] = '!';

print(w2); // abc

72

Strings wish they were arrays of
… well … length-one strings? (Wait, what?)

Even still, your knowledge of arrays will help you, to a point.

String vs. Array

let w1 = ['a','b','c'];

let len1 = w1.length;

let char1 = w1[2];

w1.reverse();

w1[3] = '!';

let w2 = 'abc';

let len2 = w2.length;

let char2 = w2[2];

// no

// no

73

Strings are immutable: once you have one, you can’t change it.
You can assign a different string to the same variable.

Sometimes we want a character to be more than a short string.

What do we know about d ?

• It comes before q
• It’s the successor of c
• It does ==="\u0064"
• It’s the successor of "\u0063"
• It’s the successor of the successor of "\u0062"

… some simple arithmetic actually makes sense here!

74

str[i] vs. “a character”

Sometimes we want a character to support simple arithmetic.

let deeCode = 'd'.charCodeAt(0);

print(deeCode); // 100
print(deeCode - 1); // 99

print(deeCode === 0x0064); // true
print(deeCode - 1 === 0x0063); // true
print(deeCode - 1 - 1 === 0x0062); // true

// does d come before q?
let qewCode = 'q'.charCodeAt(0);
print(deeCode < qewCode); // true

75

str[i] vs. “a character”

What (else) do we know about d ?

• It’s the lower-case form of D
print('--d--'.toUpperCase()); // --D--
print('D' .toLowerCase()); // d

• It comes before q
print('d' < 'q'); // true

The same comparison works on long strings.
Careful that it still acts code-ish when there are capitals.

print('aardvark' < 'ant'); // true
print('aardvark' < 'Ant'); // false
print('aardvark'.toUpperCase()

< 'Ant'.toUpperCase()); // true
76

Some “character” info with no codes

A) true true
B) true false
C) false true
D) false false
E) (an error)

What does this print?

77

let s = ["CBC", "Global", "CBC", "CTV"];

let result1 = (s[0] === s[2]);
let result2 = (s[0][0] === s[3][0]);

print(result1 + " " + result2);

String vs. Array: using order

78

let s = 'abc';
let s2 = 'de';

print(s + s2);
// abcde

print(s.substring(1, 3));
// bc

print(s.indexOf('b'));
// 1

print('z'.repeat(3));
// zzz

let a = ['a','b','c'];
let a2 = ['d','e'];

print(a.concat(a2));
// a,b,c,d,e

print(a.slice(1, 3));
// b,c

print(a.indexOf('b'));
// 1

String vs. Array: using order

79

All the “array versions” on the last slide follow patterns 1..4
(data in, data out; no mutation).

There are often no string equivalents of the built-in
functions that use array pattern 5 (mutation):

• splice: instead, use indexOf, substring, +, join

• push, pop, shift, unshift: ditto; special cases of splice

• reverse: easy enough to make your own

• sort: unusual to want inside one piece text

• fill: last slide’s repeat (pattern 4) fills in nicely

More on Concatenation
The + operator on strings is very flexible.

"Call me" + " " + "Ishmael."

"Ours go to " + 11

"The value of PI is " + PI

"A " + true + " or " + false + " question"

let x, y;

"The point is at (" + x + ", " + y + ")"

80

String and Array: better together

81

let a = ['a','b','c'];
let s = 'abc';

// join : array -> string
print(a.join('-THEN-')); // a-THEN-b-THEN-c
print(a.join('')); // abc
print(a.join('') === s); // true

// split : string -> array
print('a-THEN-b-THEN-c'.split('-THEN-'));

// a,b,c
print(s.split('')); // a,b,c
print(s.split('') === a); // false

strings are

values

arrays are

objects

What does this print?

82

(A) abc

(B) abcd

(C) ”abc”d

(D) abc39

(E) abcd39

let d = 39;

print("abc" + d);

What does this print?

83

print("123" + 456);

(A) 123

(B) 123456

(C) 579

(D) 12459

(E) Nothing, it’s an error

A) ABC:NBC
B) NBC:CBC
C) CBC:CTV
D) ABCNBC
E) NBCCBC

What does this print?

84

let s = ["ABC", "NBC", "CBC", "CTV"];
let result;

result = (s[1] + ":" + s[2]);
print(result);

Parsing strings
We often obtain “raw text” from external sources, and need
to parse it into meaningful data.

The built-in functions int() and float() work on strings and
arrays of strings.

let a = int("1234");

let b = float("567.89");

let strs = ["-81", "0", "36"];

let arr = int(strs);

85

Outputting text
The p5 print() function will write any text (or really, any
value at all) to the console. Handy for debugging!

The built-in text() function will draw text at a given position
in the sketch window, using the current fill colour.

See also textSize(), textFont(), textAlign().

86

Working with Text/Strings

Specify a specific Font
textFont("Georgia");

Load in your favourite Font!

let myFont = loadFont("assets/inconsolata.otf");
textFont(myFont);

87

Working with Text/Strings
Specify the fill color

fill(0);

Specify the size
textSize(25);

Specify how to align the text
textAlign(CENTER, BOTTOM);

Display the text
let txt = "my text";
text(txt, 10, 10);

88

function setup() {

createCanvas(275, 400);

textSize(72);

colorMode(HSB, 255);

background(0, 0, 255);

for (let y = 80; y < 380; y += 15) {

fill(map(y, 80, 380, 0, 255), 255, 255);

text("CS 106" , 10, y);

}

}

89

