
Module 08

Noise
CS 106 Winter 2020

noise()

• Perlin noise is a random sequence generator

producing a more natural ordered, harmonic

succession of numbers compared to the

standard random() function.

• It was invented by Ken Perlin in the 1980s and been

used since in graphical applications to produce

procedural textures, natural motion, shapes,

terrains etc.

1D noise()
• Always returns a number between 0-1

• For any given run of your program the same
argument always returns the same result.

• noise(6);

• Returns a number between 0-1

• Another call noise(6);

• Returns the same number

Remember random()

• random(1) returns a number between 0 and 1

• Calling random(1) again returns a different number

between 0-1

• random(6) returns a number between 0-6

noise(x) always returns the

same number
let v;

function setup() {

let start = 100;

v = noise(start);// v is between 0 and 1

print(v);

v = noise(start);// v is same number as the v above

print(v);

v = noise(start);// v is same number as both v above

print(v);

}

let v1;

let v2;

let v3;

function setup() {

let start = 10;

v1 = noise(start); // returns a number between 0-1

v2 = noise(start + 0.001);//returns a num close to v1

// num is between 0-1 always

v3 = noise(start + 1);//returns a dissimilar num

// number is between 0-1 always

print(v1, v2, v3);
}

Varying the noise() argument

noise() can return similar or dissimilar numbers

// Let's draw a smooth line

function setup() {

createCanvas(600, 200);

background(220);

noFill();

let v = 10;

let vInc = 0.05;

let space = 5;

let numPoints = width / space;

beginShape();

for (let i = 0; i < numPoints; i++) {

vertex(i * space, height/2 + (noise(v) * 100));

v = v + vInc;

}

endShape();

}

Create a smooth line with noise()

Modify the above code:

vInc = 0.001;

• The line is not straight. But it doesn’t vary much. It

is very smooth.

Modify the above code:

vInc = 1.0;

• The line varies a lot. It is not a smooth line.

Moving a ball along a

noisey line

• Demo code:

• “BallOnNoiseyLine”

BallOnNoiseyLine (1 of 2)
let dx;

let count = 1;

let v;

let vInc = 0.01;

let ballX;

let ballY;

function setup() {

createCanvas(500, 500);

noFill();

}

BallOnNoiseyLine (2 of 2)
function draw() {

background(220);

v = 1;

beginShape();

for (let i = 1; i < width; i++) {

let x = i;

let y = map(noise(v), 0, 1, 100, 400);

vertex(x, y);

v = v + vInc;

if (i === count) {

ballX = x;

ballY = y;

}

}

endShape();

ellipse(ballX, ballY, 10, 10);

count = (count + 1) % width;

}

Demo Code

• Demo code:

• “Noise1DDirectManip”

Direct Manipulation

• Use mouseDragged() function

• Calculate movement of the mouse (left-right or

right-left)

• Use mouse movement as Direct Manipulation

noise1DDirectManip (1 of 2)
let dx;

function setup() {

createCanvas(600, 200);

dx = 0;

}

noise1DDirectManip (2 of 2)
function draw() {

background(220);

strokeWeight(2);

stroke(255, 0, 0);

noFill();

beginShape();

for (let x = 0; x < 600; x++) {

let v = noise(x - dx);

let y= map(v, 0, 1, 0, height);

vertex(x, y);

}

endShape();

}

function mouseDragged() {

dx += mouseX - pmouseX;

}

2D Noise

• Go through demo code:

• “Noise2DDirectManip”

“Noise2DDirectManip” (1 of 2)

let tx;

let ty;

// Scaling factor for the noise() function. Try

// changing this number!

let sc = 100.0;

function setup(){

createCanvas(300, 300);

}

“Noise2DDirectManip” (2 of 2)

function draw(){

background(220);

for (let y = 0; y < width; ++y) {

for (let x = 0; x < height; ++x) {

let v = noise((x-tx) / sc, (y-ty) / sc);

set(x, y, color(v * 256.0));

}

}

}

function mouseDragged(){

tx += mouseX - pmouseX;

ty += mouseY - pmouseY;

}

• Be able to write short sketches that use the

noise() function.

• Understand how noise() works in 1D and 2D,

especially 1D.

• Understand the difference between random() and

noise().

Goals

Which of these expressions is NOT guaranteed to

return a number between 0 and 1?

21

(A)

(B)

(C)

(D)

(E)

random(100) / 100.0

random(0, 1);

noise(3);

noise(0, 1);

They all return numbers between

0 and 1.

Assume we have the following two lines of code:

let a = noise(99.0);

let b = noise(99.01);

If noise(99) returns “0.5”, which is the most likely

outcome returned by noise(99.01)?

22

(A)

(B)

(C)

(D)

(E)

1.49

0.75

0.51

99.51

A number between 99 and 99.01

Assume we have the following line of code:

let a = noise(99.0);

Which is the most likely value of “a”?

23

(A)

(B)

(C)

(D)

-0.43

99

0.43

A number between 0-99

The following 3 clicker questions are about this code:

createCanvas(400, 100);

let v = noise(10);

let x1 = 100 + (v * 100);

let x2 = x1 + 100;

line(x1, 50, x2, 50);

What might the value of “v” be?

24

(A)

(B)

(C)

10

A number between 0-1

A number between 0-10

The following 3 clicker questions are about this code:

createCanvas(400, 100);

let v = noise(10);

let x1 = 100 + (v * 100);

let x2 = x1 + 100;

line(x1, 50, x2, 50);

What might the value of “x1” be?

25

(A)

(B)

(C)

A number between 0-100

A number between 100-200

A number between 100.0-101.0

The following 3 clicker questions are about this code:

createCanvas(400, 100);

let v = noise(10);

let x1 = 100 + (v * 100);

let x2 = x1 + 100;

line(x1, 50, x2, 50);

What might the value of “x2” be?

26

(A)

(B)

(C)

A number exactly 100 larger than x1

A number between 100-200

A number between 200-300

Remember this ex from CS105

“Similar” code is needed in Lab08

Let’s Review the code (next slide)

Draw Gradient:

From CS105 Lecture Slides
let shade = 0;

function setup() {

createCanvas(100, 255);

background(220);

for (let y = 0; y <= height; y++) {

stroke(shade);

line(0, y, width, y);

shade += 1;

}

}

