
Module 11

Tree-Structured data
CS 106 Winter 2020

[Rosa Say on flickr]

Trees

Some data is hierarchical: we think of each part

(“node”) as “owning” or “enclosing” some sub-parts,

down to some base level.

Node

Leaf Node

watershedcreative.com/naked/html-tree.html

Sometimes, a node behaves like a set of

attributes: it has a specific slot set aside for each

kind of attribute.

Attributes can have sub-attributes and so on.

Sometimes, a node holds something more like a

sequence of children.

Sometimes, a node holds something more like a

sequence of children.

There are two standard ways that tree-structured

data is passed around online:

• XML: eXtended Markup Language

• JSON: JavaScript Object Notation

Both are “simple” text-based formats for more or

less arbitrary data.

Both are accommodated for in the p5 library. We’ll

use JSON because it’s nicer to read.

“Students”

“ID”: 123

“Grade”:
"A"

“Score”:
93

“ID”: 789

“Grade”:
"B+"

“Score”:
85

JSON objects

JSON objects

A JSON Object is a comma-separated list of

key:value pairs, enclosed in curly braces. It behaves

like a dictionary! It maps string keys to arbitrary

values.

{
“Student ID”: 123,
“Clicker”: "78%”,
“Assignments”: “90%”,
“Midterm”: “91%”,
“Final”: “93%”,

}

JSON objects

The values in a JSON object can be pretty

much anything. ints, floats, strings, arrays,

arrays of arrays, even other JSON objects!

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {
"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [
{
"type": "home",
"number": "519 555-1234"

},
{
"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj

Getting JSON Objects

let stuff = loadJSON("filename.json");

Read the contents of the file into a JSONObject.

Working with JS Objects

let obj = loadJSON("address.json");

… obj.key …

… obj.fieldname…

… obj.phone …

… obj.address …

… obj.whatever[8] …

… obj.classrooms[4].teacher_name …

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.firstName;

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange
Street",

"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [
{

"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.age;

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.phoneNumbers;

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.phoneNumbers;

I’m an array!

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.phoneNumbers[1];

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.phoneNumbers[1];

I’m an object!

{
"firstName": "John",
"lastName": "Smith",
"age": 35,
"address": {

"streetAddress": "51 Strange Street",
"city": "Kitchener",
"province": "ON",
"postalCode": "N3K 1E7"

},
"phoneNumbers": [

{
"type": "home",
"number": "519 555-1234"

},
{

"type": "mobile",
"number": "226 555-4567"

}
],
"children": ["Eunice", "Murgatroyd"],
"spouse": null

}

obj.phoneNumbers[1].number;

Example: counting files

"type": "directory",

"name": ".",

"children": [

{

"type": "file",

"name": ".DS_Store"

},

{

"type": "directory",

"name": "02 Arrays Strings",

"children": [

{

"type": "directory",

"name": "RainbowText",

"children": [

{

"type": "file",

"name": "RainbowText.pde"

}

]

},

{

"type": "directory",

"name": "RandomFont",

"children": [

{

"type": "file",

Example: RSS Feeds

feeds.wnyc.org/radiolab

See: rss2json.com

<?xml-stylesheet type="text/xsl" media="screen" href="/~d/styles/rss2enclosuresfull.xsl"?>

<?xml-stylesheet type="text/css" media="screen" href="http://feeds.wnyc.org/~d/styles/itemcontent.css"?>

<rss xmlns:atom="http://www.w3.org/2005/Atom" xmlns:itunes="http://www.itunes.com/dtds/podcast

<channel>

<title>Radiolab</title>

<link>http://www.radiolab.org/series/podcasts/</link>

<description>Radiolab is a show about curiosity. Where sound illuminates ideas, and the boundaries blur between science,

Radiolab is heard around the country on more than 500 member stations. Check your local station for airtimes.

Embed the Radiolab widget on your blog or website.

Radiolab is supported, in part, by the Alfred P. Sloan Foundation, enhancing public understanding of science and technology i

All press inquiries may be directed to Jennifer Houlihan Roussel at (646) 829-4497.</description>

<language>en-us</language>

<lastBuildDate>Fri, 24 Mar 2017 01:00:00 -0400</lastBuildDate>

<ttl>600</ttl>

<itunes:explicit>no</itunes:explicit>

<atom10:link xmlns:atom10="http://www.w3.org/2005/Atom" rel="self" type="application/rss+xml

<feedburner:info xmlns:feedburner="http://rssnamespace.org/feedburner/ext/1.0" uri="radiolab

<atom10:link xmlns:atom10="http://www.w3.org/2005/Atom" rel="hub" href="http://pubsubhubbub.appspot.com/" />

<media:copyright>© WNYC</media:copyright>

<media:thumbnail url="https://media2.wnyc.org/i/1400/1400/l/80/1/Radiolab-wnycstudios.jpg" />

<media:keywords>Science,Technology,Philosophy,Education,radiolab,jad,abumrad,krulwich,Radio,Lab,wnyc,studios</

<media:category scheme="http://www.itunes.com/dtds/podcast-1.0.dtd">Science & Medicine/Natural Sciences</

<media:category scheme="http://www.itunes.com/dtds/podcast-1.0.dtd">Society & Culture</

<media:category scheme="http://www.itunes.com/dtds/podcast-1.0.dtd">Education</media:category>

<itunes:author>WNYC Studios</itunes:author>

<itunes:image href="https://media2.wnyc.org/i/1400/1400/l/80/1/Radiolab-wnycstudios.jpg" />

<itunes:keywords>Science,Technology,Philosophy,Education,radiolab,jad,abumrad,krulwich,Radio,Lab,wnyc,studios</

"description": "Radiolab is a show about curiosity. Where sound illuminates ideas, and the boundaries blur between science, philosophy, and

stations. Check your local station for airtimes. Embed the Radiolab widget on your blog or website. Radiolab is supported, in

modern world. More information about Sloan at www.sloan.org. All press inquiries may be directed to Jennifer Houlihan Roussel

"image": "https://media2.wnyc.org/i/1400/1400/l/80/1/Radiolab-wnycstudios.jpg"

}

"items": [

{

"title": "Shots Fired: Part 2"

"pubDate": "2017-03-24 05:00:00"

"link": "http://www.radiolab.org/story/shots-fired-part-2/"

"guid": "http://www.radiolab.org/story/shots-fired-part-2/"

"author": "WNYC Studios"

"thumbnail": "https://media2.wnyc.org/i/130/130/c/80/1/3957814193_6fd835e7c0_o.jpg"

"description": "We again join Ben Montgomery, reporter at the Tampa Bay Times, as he looks at data on every person

"content": "We again join Ben Montgomery, reporter at the Tampa Bay Times, as he looks at data on every person

"enclosure": {

"link": "https://www.podtrac.com/pts/redirect.mp3/audio.wnyc.org/rl_extras/rl_extras17shotsfiredpt2.mp3"

"type": "audio/mpeg"

"duration": 1766

let obj;

obj = loadJSON("radiolab.json");

let first_title = obj.items[0].title;

Going live

All load functions accept URLs as parameters in

addition to file names!

loadStrings()

loadImage()

loadTable()

loadJSON()

Functions like loadStrings() and loadImage() allow

you to access fixed content over the internet.

loadJSON() is more like calling a function over the

web.

api.uwaterloo.ca

Example: classrooms

The UW API supports requests like “what courses

are scheduled in a given classroom?”

GET /buildings/{building}/{room}/courses.{format}

Most online APIs require you to register for a key.

www.webdesignerdepot.com/2011/07/40-useful-apis-for-web-designers-and-developers/

Example: Square vs

Circles
Game Description:

1. Game generates a circle and a square per frame using random

function.

2. If the circle is generated on the left half of the screen, the score

of circles in incremented by 1.

3. If the square is generated on the right half of the screen, the

score of squares is incremented by 1

4. Scores and the current winner is displayed on the screen

5. User can control the speed of the game through a slider

6. Both scores (circle and square) and the fps of the game are

loaded from a JSON.

7. User can save the score and settings in a JSON file by pressing

the save button

8. User can copy and paste the saved json to the data folder to

start the game from the saved point onwards.

