
Warmup

• Log in to Jupyter:
https://jupyter.math.uwaterloo.ca/

• Create a new Notebook for “Python 3
(ipykernel)”.

• Write this into Jupyter and press the run
button:

• Open “Assignment-00.ipynb” in the left panel

• Do what the first box says.

!wget https://student.cs.uwaterloo.ca/~cs114/src/Assignment-00.ipynb

CS114
L1 (M1)

Administrata
CS114 L1 (M1)

Administrata

• The course web site is the central “hub”
for course information:

• https://student.cs.uwaterloo.ca/~cs114/

• The course outline and contact info for
course staff is there

• Instructor: Gregor Richards

• Coordinator: Scott Freeman King

• ISAs and IAs: cs114@uwaterloo.ca

Tools and Software

• In this course you will be learning to use one
popular programming language: Python

• We will mostly be running Python in a web
environment called “Jupyter”, by creating so-
called “Jupyter Notebooks”.

• Jupyter is a popular environment to use
Python on the web, but you will also learn to
run it on your own computers.

• All software in this course is free

Resources

• Slides: Available on course web site (after each
lesson day)

• Jupyter notebook: Available from Math
department, https://jupyter.math.uwaterloo.ca/

• Assignments: Linked from course web site

• Textbook: Optional, linked via course web page

• Alternate textbook: Also optional, available via
library access online

• Later in the term you will need a computer to run
Python locally

Resources

• Tutorials: Hands-on experience. No
tutorials this week, they start next week
(Friday the 12th)

• Office hours: Instructor and ISAs have
office hours. The schedule will be posted
on the course web page. Also start next
week.

Resources

• Piazza: Course discussion should go here.
Make sure you’re signed up. Also a sort of
“always-there” office hours.

• Web site:
https://student.cs.uwaterloo.ca/~cs114/ .
This is the hub for all online resources
(everything else is linked from here).

• Some parts of the course web site may only
appear next week.

Course components

• Assignments (see outline)

• Exams

• You must pass the exam weighted average
to pass the course!

• In-lecture quizzes (if I can sort out how)

• Marking scheme described in outline

• Review academic policies in outline as
well

Academic integrity

• Cheating on assignments is a disservice to
yourself: you won’t be prepared for exams,
and you must pass the exams to pass the
course

• The elephant in the room: AI

• AI is stupid and bad at everything. It feels like
the opposite when you ask it about something
you’re not an expert at. It will feel much smarter
than you at Python until you learn how
mediocre its solutions are.

• Learning to use AI properly is valuable, but you
must be the expert. Use of AI is disallowed on
most assignments.

When is it cheating?

• You are allowed and encouraged to talk
to other students about concepts

• You cross the line when you talk about
code or solutions

• When in doubt, refrain or ask a member
of course staff

Assignments

• Programming is 10% writing code, 90%
figuring out why your code doesn’t work

• (That’s just as true of somebody with
decades of experience as somebody with
days of experience!)

• Start assignments early! Don’t judge time
by how long you spend programming.
Debugging is most of the time!

Submissions

• A uwaterloo CS system called Markus.

• https://markus.student.cs.uwaterloo.ca/

• Assignments are graded in three stages:

• Correctness (your code does the right thing)

• Stage 1: automatic in Markus when you submit

• Stage 2: by TAs after the deadline

• Stage 3: Style (your code is understandable)

A subset of Python

• Python is way bigger than we’re going to
learn in this course

• You are not required to stick to the subset
we’ll see in this course

• Unfortunately, code that uses advanced
features looks like AI 

• So, if you do, tell us (in the code) where
you learned the features! Cite your
sources!

Computation
CS114 L1 (M1)

What is computation?

• I’m from the last generation that was told
this by our teachers:
 “You won’t always have a calculator with you!”

• This advice means well but totally misses
the point: knowing how to multiply in
your head doesn’t help you know when
multiplication is needed. Applying math is
a creative endeavor.

Calculation

• Calculation is the
mechanics of math

• (Addition,
subtraction,
multiplication,
division, etc.)

• Example: two-body
problem

Two-body problem

Given two
astronomical bodies’
positions and
velocities, we can
predict their locations
and velocities with a
simple mathematical
expression: just plug
in the time

Computation

• Calculation with
repetition and
decision making

• Must take a step,
then use its results
to decide what to
do next

• Example: n-body
problem

n-body problem

With the addition of
even a third
astronomical body,
the problem becomes
chaotic. Every
movement affects the
expression. Can no
longer predict
indefinitely in one
calculation.

n-body problem

Instead, we must
calculate one small
step (a second, a
day, a week…), then
adjust based on the
new positions.
Repeat, over and
over, until we reach
the time we want.

Computation

• Computation is more powerful than
calculation

• A computer is to computation as a
calculator is to calculation: it is just a
dumb computing machine

• Correctly applying computation is a
creative endeavor

Computation and Python

• The only language computers directly
understand is electrical impulses

• That’s… not very human

• Software exists to translate abstract
expressions of computation into those
electrical impulses

• Python is one such piece of software, and
the name for the language to express
computation

Why Python

• There are thousands (probably hundreds
of thousands) of programming languages

• Why this one?

• Reasons for language choice are extrinsic

• It’s not that Python is magically good at
science, but scientists use Python, and
momentum begets momentum

def advance(dt, n, bodies, pairs):

 for i in range(n):

 for ([x1, y1, z1], v1, m1,

 [x2, y2, z2], v2, m2) in pairs:

 dx = x1 - x2

 dy = y1 - y2

 dz = z1 - z2

 dist = sqrt(dx * dx + dy * dy + dz * dz)

 mag = dt / (dist*dist*dist)

 b1m = m1 * mag

 b2m = m2 * mag

 v1[0] -= dx * b2m

 v1[1] -= dy * b2m

 v1[2] -= dz * b2m

 v2[2] += dz * b1m

 v2[1] += dy * b1m

 v2[0] += dx * b1m

 for (r, [vx, vy, vz], m) in bodies:

 r[0] += dt * vx

 r[1] += dt * vy

 r[2] += dt * vz

def advance(dt, n, bodies, pairs):

 for i in range(n):

 for ([x1, y1, z1], v1, m1,

 [x2, y2, z2], v2, m2) in pairs:

 dx = x1 - x2

 dy = y1 - y2

 dz = z1 - z2

 dist = sqrt(dx * dx + dy * dy + dz * dz)

 mag = dt / (dist*dist*dist)

 b1m = m1 * mag

 b2m = m2 * mag

 v1[0] -= dx * b2m

 v1[1] -= dy * b2m

 v1[2] -= dz * b2m

 v2[2] += dz * b1m

 v2[1] += dy * b1m

 v2[0] += dx * b1m

 for (r, [vx, vy, vz], m) in bodies:

 r[0] += dt * vx

 r[1] += dt * vy

 r[2] += dt * vz

C
a

lc
u

la
ti

o
n

def advance(dt, n, bodies, pairs):

 for i in range(n):

 for ([x1, y1, z1], v1, m1,

 [x2, y2, z2], v2, m2) in pairs:

 dx = x1 - x2

 dy = y1 - y2

 dz = z1 - z2

 dist = sqrt(dx * dx + dy * dy + dz * dz)

 mag = dt / (dist*dist*dist)

 b1m = m1 * mag

 b2m = m2 * mag

 v1[0] -= dx * b2m

 v1[1] -= dy * b2m

 v1[2] -= dz * b2m

 v2[2] += dz * b1m

 v2[1] += dy * b1m

 v2[0] += dx * b1m

 for (r, [vx, vy, vz], m) in bodies:

 r[0] += dt * vx

 r[1] += dt * vy

 r[2] += dt * vz

R
e

p
e

ti
ti

o
n

But I thought computers did x

• Everything else is just set dressing on
computation

• When a computer is displaying this slide,
the shape of each letter is computed
through a piece of software called a font
rasterizer

• (etc., etc., etc.)

Be the emperor of your
computer
CS114 L1 (M1)

Jupyter

• Let’s open a Jupyter notebook and see
some Python

• https://jupyter.math.uwaterloo.ca/

• (Other Jupyter servers are available, and you can even
run your own, but we’ll be using Math’s here)

Jupyter as a calculator

• Let’s calculate
4 7+2 2

6+5

• Note that the result is not an integer, and
it’s shown rounded (not as an exact
fraction)

• Be careful of this rounding; it’s real!

• Python has BEDMAS/PEMDAS

Jupyter as a computer

• Python is an imperative programming
language

• What this means is that you’re giving the
computer a sequence of commands
(synonym: imperatives) to run in order

• You’re in command. It only does what you
ask. Imperative comes from the same
root as emperor (in Latin, imperator)

Syntax of a program

• Syntax: The grammar of a (programming)
language

• Our commands are statements

• Mathematical calculations are expressions

• Statements contain expressions

Jupyter as a computer

• Calculations are usually incomplete
commands

• For convenience, Jupyter will show the result of
the last calculation, but not others

• If you want it to output the result, command
it to do so!

• … by asking it to “print”, for silly historical
reasons

print(expression) or
print(expression, expression…)

New syntax!

• What’s going on with “print(…)”?

• print is a procedure, and this is a
procedure call

• (Actually, we far more often use the word
“function”)

• A procedure is a way of boxing up and
parameterizing computational steps

Procedures vs. functions

Brief pedantry aside:

Technically, functions are mathematically
pure (they aren’t composed of imperative
steps) and procedures are not. In practice,
programmers usually don’t make this
distinction, so we’ll call print a function.

Strings

• You may want to print text, not just
numbers

• In Python, a piece of text is called a string

• Just surround it in quotes:
 print("Hello, world!")

(Single quotes also work, and are more common than
double quotes. I use double quotes because I’m old.)

The power of change

• Make your steps do something by storing
values in variables

• Store to a variable with =
 x = 42

• Retrieve the value by using the name
 x / 12

The power of change

• Variables are variable. You can not only
set them, but change them.
 x = 7

 print("x is", x)

 x = x * 6 # Huh???

 print("x is", x)

• Mathematicians hate it!
(This isn’t what “variable” or “=” mean in math)

	Slide 1: Warmup
	Slide 2: CS114
	Slide 3: Administrata
	Slide 4: Administrata
	Slide 5: Tools and Software
	Slide 6: Resources
	Slide 7: Resources
	Slide 8: Resources
	Slide 9: Course components
	Slide 10: Academic integrity
	Slide 11: When is it cheating?
	Slide 12: Assignments
	Slide 13: Submissions
	Slide 14: A subset of Python
	Slide 15: Computation
	Slide 16: What is computation?
	Slide 17: Calculation
	Slide 18: Two-body problem
	Slide 19: Computation
	Slide 20: n-body problem
	Slide 21: n-body problem
	Slide 22: Computation
	Slide 23: Computation and Python
	Slide 24: Why Python
	Slide 25
	Slide 26
	Slide 27
	Slide 28: But I thought computers did x
	Slide 29: Be the emperor of your computer
	Slide 30: Jupyter
	Slide 31: Jupyter as a calculator
	Slide 32: Jupyter as a computer
	Slide 33: Syntax of a program
	Slide 34: Jupyter as a computer
	Slide 35: New syntax!
	Slide 36: Procedures vs. functions
	Slide 37: Strings
	Slide 38: The power of change
	Slide 39: The power of change

