
Warmup

Print "Hello, world!", with the space,
without putting a space in your string.

That is,

print("Hello, world!")

But, no space allowed here!
Get it to print the space without writing this space.

The power of change

• Make your steps do something by storing
values in variables

• Store to a variable with =
 x = 42

• Retrieve the value by using the name
 x / 12

The power of change

• Variables are variable. You can not only
set them, but change them.
 x = 7

 print("x is", x)

 x = x * 6 # Huh???

 print("x is", x)

• Mathematicians hate it!
(This isn’t what “variable” or “=” mean in math)

One step at a time

• Remember, we’re running commands in
order

• If you change a variable after it’s been
used, that use is in the past
 x = 7

 y = x * 2

 x = x * 3

 print("x is", x)

 print("y is", y)

Variable names

• Variable name must

• start with a letter or underscore, and

• contain only letters, underscores, and
numerical digits. In particular, no spaces.

• Nothing stops you from overwriting
print or other functions (other than
common sense), so try not to step on
your own toes!

Variable names

• Multiple words in a variable name:
snake_case and camelCase are both
common.

• Style conventions:

• Use either snake_case or camelCase, but
be consistent

• Use descriptive names (not x) wherever
possible

Jupyter is weird

• Enter this into a cell and run it:
 z = 42

• Then clear the cell, and replace it with
this:
 z / 7

• You’ll notice that it shows a result. It
remembered z.

Jupyter is weird

• This “hidden state” is there so that cells can
work together (set z in one cell, use it in
another)

• But, can allow cells to work together through
time (set z in one cell, delete that
assignment, then use it anyway)

• To make sure you’re not relying on this,
occasionally use the “run all” button

• This resets all the variables (called “restarting
the kernel”)

Comments

• In an earlier example, I snuck in the
question “Huh?”:

• x = x * 6 # Huh???

• This is called a comment. You can make
your code easier to read by describing
what’s happening using comments.

• Starts with a #, goes to the end of the line

• Can be a line of its own

More power

• Right now we have a five-function
calculator

• The functions in a scientific calculator are
available in a module called math

• Modules are bundles of functions, values,
variables, or anything else, grouped
together for organization

Pythogoras

• Let’s calculate the length of the
hypotenuse of a right triangle given the
length of its two sides

import math

math.sqrt(a**2 + b**2)

Smarter imports

• You can also import a specific name

from math import sqrt, log

sqrt(a**2 + b**2)

• There’s no consistent style for whether to
import specific names or whole modules. Use
whatever is readable. You do not have to be
consistent if importing multiple modules.

Too many things!

• The math module provides a lot of
functions… and there are a lot of
modules!

• Find what’s in it with the tab key

• The help function gives you help on
anything you’ve imported
 help(sqrt)

Reusing (functions)
CS114 L2 (M1)

Back to Pythagoras

• Note how I wrote the code:
 sqrt(a**2 + b**2)

• What’s this a and b?

• We want to use this code for any value of
a and b

• Right now, if we need it twice, we have to
rewrite this code!

Functions

• We already saw functions such as print
and sqrt

• Now let’s write one of our own!

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Functions

• We define a function with the keyword def

• (A keyword is a word that has a special meaning
in the programming language, other than just a
name)

• We want this function to be parameterized.

• Similar to sqrt. We need to be able to tell sqrt
what we want to square-root, and we need to
be able to tell pythagoras the sides of our
triangle

Functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Define Function name Parameters

Body of the function (what it actually does)

Functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Header

Body is indented past the header
(that’s how Python knows it’s the body!)

Functions

• Defining the function doesn’t make
anything happen

• We have to call the function for it to run

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

pythagoras(3, 4)

Functions

• A function can be any number of steps

def pythagoras(a, b):

 asquared = a**2

 bsquared = b**2

 return sqrt(asquared + bsquared)

Functions

def pythagoras(a, b):

 asquared = a**2

 bsquared = b**2

 return sqrt(asquared + bsquared)

Functions can define and use
their own variables

Functions and variables

• They are the function’s own variables

• They don’t exist outside of the function:

def pythagoras(a, b):

 asquared = a ** 2

 bsquared = b ** 2

 return sqrt(asquared + bsquared)

pythagoras(3, 4)

print(asquared) # ERROR!

Functions and variables

• Parameters are also variables

• You can overwrite them

def pythagoras(a, b):

 a = a ** 2

 b = b ** 2

 return sqrt(a + b)

• This is usually confusing and should usually
be avoided, but use common sense

Pedantry aside

• I’ve used the terms “parameter” and “argument”

• In pythagoras, a and b are parameters

• The value you actually pass in is the argument:
the argument fills the parameter

• The confusion: if we talk about what pythagoras
does, we’ll talk about a and b as their future values,
the arguments

• Often used interchangeably, but technically not the
same

Functions calling functions

• Our pythagoras function calls sqrt

• We can also call our own functions in
functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• Here, we use a call to pythagoras as a
value in a calculation. What actual
number is used in the calculation?

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• The return statement of the
pythagoras function gives a value to
whoever called pythagoras

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• WARNING! Returning ends the function,
even if there are more statements left!

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

 print("This will never be printed!")

• Why would you want this? We’ll see when
we get to decision-making.

Functions calling functions

• print is also a function

• Very useful for understanding and
debugging code!

def pythagoras3(a, b, c):

 h = pythagoras(a, b)

 print("Hypotenuse of one face:", h)

 return sqrt(h**2 + c**2)

To return or not?

• A function doesn’t have to explicitly
return

def pythagoras(a, b):

 sqrt(a**2 + b**2)

• But, if it doesn’t, the value it returns is
“None”, a special value that means “there
is no value”.

None is Hell

• Why have functions return None?

• We want functions that are just there to
do something, rather than returning
something…

• but Python has no way of distinguishing
these two kinds of functions.

• So, Python needed something for
x = print("Whoops!") to do.

None is Hell

• You can store None in a variable and
Python won’t report anything wrong

• You can pass None as an argument to a
function, and it’ll work until (and unless!)
it’s used

• Forgetting to return causes a problem to
arise distant from the actual error in the
code

Bugs, bugs, bugs!
CS114 L2 (M1)

Debugging

• Time for debugging!

from math import sqrt

def pythagoras(a, b):

 sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras3(4, 5, 6))

Debugging

One thing to be careful of when debugging:
errors happen when code runs, so if you
don’t run a buggy function, you won’t see
the problem!

from math import sqrt

def pythagoras(a, b):

 sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras(4, 5))

Avoiding bugs

• Develop incrementally (one small step at
a time), using print to spot-check

• Let’s make a distance function (distance
between two points) incrementally…

def distance(x1, y1, x2, y2):

 …

Avoiding bugs: printing

• Make sure whatever you print is
descriptive/unique enough that you know
which is which

def pythagoras(a, b):
 asquared = a ** 2
 print("a squared:", asquared)
 bsquared = b ** 2
 print("b squared:", bsquared)
 r = sqrt(asquared + bsquared)
 print("result:", r)
 return r

Avoiding bugs: printing

•

def pythagoras(a, b):
 asquared = a ** 2
 print("a squared:", asquared)
 bsquared = b ** 2
 print("b squared:", bsquared)
 r = sqrt(asquared + bsquared)
 print("result:", r)
 return r

Don’t be afraid to introduce variables just so that
you can print something from the middle of a

calculation!

Write some tests

E
x

e
rc

is
e

Fill in the blanks in the start code to write two tests for the provided distance function.

!

You must use the check module to test every function you write!

We may provide a few tests to show how a function should behave. For every func-

tion you write, you must create at least two tests, in addition to any we provide.

For most functions, 2 tests will not be enough to thoroughly test it. You should test

carefully to ensure you code always works correctly. Code that does not work will usually

get a grade of 0.

39/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Make tests match annotations

Your tests should always match the annotations.

It is incorrect to write something like:
check.within("a few atoms", total _electrons(5.0, 10.0), 50.0, 0.0001)

or
check.expect("a little force", force(5, 10), 50)

Watch especially with zero: 0 is an int , while 0.0 is a float .

You cannot use 0 and 0.0 interchangeably!

The following test is incorrect, and if your code passes it, your code is incorrect.
check.expect("a little force", force(5.0, 0), 0)

40/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

The Design Process

When writing a function, using this process will save effort.

1 Write the docstring and annotations.

If you can’t, you don’t what the function is supposed to do; figure that out first.

2 Write tests, using check.expect or check.within .

Calculate the values by hand, to help ensure you know what you are trying to do.

3 Only after completing these steps, start writing code.

As you get into the problem:

1 consider if you are actually solving the problem. If not, you may want to change your

docstring or tests.

2 look for a smaller problem that is a part of the whole problem. You may want to write

a separate “helper” function that solves this smaller problem.

41/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Function Design Practice

E
x

e
rc

is
e

If a, b, and c are the lengths of the three sides of triangle, then the area of that

triangle is given by Heron’s Formula,

A =
p

s(s − a) (s − b) (s − c)

where s = a+b+c
2 .

Write a function area(x1, y1, x2, y2, x3, y3) that takes the coordinates of the three

corners of a triangle, and returns its area.

H
in

t Start by writing the docstring and type annotations.

Then write some tests. Choose some triangles that are easy to work with.

Finally, use incremental development to finish your solution.

42/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Module summary

Become comfortable reading code, line by line, like a recipe.

Use state diagrams to help work out what a piece of code does.

Start getting used to error messages.

Be able to define and use variables and simple arithmetic functions.

Use docstrings, annotations, and tests to make your code easier to create and

understand.

Before we begin the next module:

Read and complete the exercises in module 1 of the online textbook, at

https://online.cs.uwaterloo.ca/

Complete the module 1 Review Quiz, due soon.

43/43 CS 114 - Winter 2025 Module 1, Section 5: Summary

Module 1: Introduction

E
x

e
rc

is
e

1 Login to Jupyter: https://jupyter.math.uwaterloo.ca/

2 Create a new Notebook for “Python 3 (ipykernel)”.

3 Copy the following command from Learn, then paste it into Jupyter:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-01-start.ipynb

1/43 CS 114 - Winter 2025 Module 1

Welcome to CS 114

Most information about the course is in Learn.

The course outline is at https://outline.uwaterloo.ca/view/nnw88w

Contact info for all course staff is there, but if in doubt, here are the key email addresses:

Instructor Cameron Morland – cjmorland@uwaterloo.ca

Coordinator Scott Freeman King – sfking@uwaterloo.ca

ISAs and IA – cs114@uwaterloo.ca

In this course we will be using Python inside Jupyter.

2/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Course components

Class slides are available on the course web site:

https://student.cs.uwaterloo.ca/~cs114/slides/

The textbook is available in UW Online. It includes extra explanation and extra exercises.

Quizzes are to be completed in the textbook. They are due most weeks, on

Thursdays.

Assignments are available on the course web site. These are due most weeks, on

Fridays.

Exams The midterm and final exams will be in-person, and involve both code and

theory. More details as we get closer.

3/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Marking Scheme

Details are in the outline: https://outline.uwaterloo.ca/view/nnw88w

Review the Policies in the outline. In particular:

“In order to maintain a culture of academic integrity, members of the University of

Waterloo community are expected to promote honesty, trust, fairness, respect and

responsibility. [See www.uwaterloo.ca/academicintegrity for more information.]”

4/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Assignments

Most of your learning comes from struggling with material. You learn little from merely

copying work, or even ideas, from another.

! All assignments are to be done individually.

! Don’t use ChatGPT or other systems to help with your assignments.

!

You must do your own work in this course.

Don’t look at someone else’s programs written for an assignment.

Don’t show your programs to anyone except course staff.

Don’t discuss our assignments with people outside of the course. Ask course

staff instead! We’re available in discussion, office hours, and by email.

If you discuss assignments with others, do not keep any written material.

Assignments

A few pieces of advice:

Start your assignments early.

Make sure you have time to test thoroughly, and fix your code when needed! Bring

questions to the office hours or discussion board as soon as possible.

Our submission system, MarkUs, is set up to identify certain errors with your code.

!
MarkUs will reject any code in which it can identify errors.

Submit early enough that you can fix the errors it finds.

Go over your graded assignments: learn from your mistakes.

6/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

A Subset of Python

Python is a big, complicated language.

We want to become skilful with specific parts of it, and we want to fully understand the

parts we study. Most of you have not used Python before. Use the tools that we learn!

If you have used Python before, you may have used tools not in this course.

We want to learn the tools in the course; we want to become proficient with those tools!

!

Use only features presented in the class slides.

Solve problems using the techniques used in the course.

(For example, do not use break .)

MarkUs will give you a message and reject any code that uses techniques outside the

course.

7/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

What is Computation?

A computer program is a set of instructions to complete a particular task.

Many tasks are mathematical: the computation of certain mathematical values.

Many mathematical questions we can answer by hand. For example:

E
x

e
rc

is
e

How many natural numbers is 12 divisible by?

Carefully consider: how did you solve this?

A big part of our task as programmers is figuring out how to take a problem like this, and

turn it into an algorithm: an explanation of how to do it.

The specific instructions to the computer are not the hard part; the hard part is figuring out

how to explain the task at all.

8/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

What is Computation?

By hand, the answer is six: {1, 2, 3, 4, 6, 12} are the only natural numbers that divide 12.

But if I were to ask the same question of another number, I might not be able to do it by

hand.

! How many natural numbers is 5 218 303 divisible by?

By hand, this question is too difficult to solve in a reasonable amount of time. Our task in

this course will be to write instructions to allow the computer to solve tasks such as these.

Instead of solving this particular problem, we will write a function that solves the problem

in general, for any number.

We can test our function using small numbers like 12, 31, and 63. Once we are confident

it is correct, we can use it to answer the “big” question.

9/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Introducing Jupyter

E
x

e
rc

is
e

Continue working in your group. Immediately go to:

https://jupyter.math.uwaterloo.ca/

1 Log in.

2 In the Launcher, click "Python 3"; this will create a new file called "Untitled.ipynb".

3 Once this is working, run the following incantation s(copy & paste from Learn):
!wget --backups=5 https://student.cs.uwaterloo.ca/~cs114/src/module-01-start.ipynb

4 Close your Untitled.ipynb tab.

5 Double click on the file module-01.ipynb to edit it. Work on class exercises in this file.

10/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Simple calculations in Jupyter

Our basic mathematical operators are: +, - , * for multiplication, / , and ** for

exponentiation. We can add round brackets () as needed.

(Other brackets including [] and {} have special meanings. We’ll see them later.)

When we select a cell and hit shift-enter, or click the symbol, it runs the code, and

displays the last calculated value.

E
x

e
rc

is
e

In Jupyter, calculate the value
4(7 + 3)2

1 + 1

11/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Printing more than one value

Jupyter shows only the last value. If we want to see more than one value, we use the print

function:

print(6 * 7)

print(42 / 7)

This will display two values, each on a separate line.

Get in the habit of using print to inspect values.

We can also print more than one value on one line, giving more than argument to the
print function:

print(6, 7, 6 *7)

This will print 6 7 42 , all on one line.

12/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Variables

To solve any significant problem, we need to be able to do a calculation, store the result,

and then use the result to figure out what to do next.

In Python we can assign a value to a

variable using the “=” operator.

You should pronounce “=” as “gets”.

Using this to help solve our problem:

Mduck = 2.0
Mgoose = 5.0
Fg = 9.8 * Mduck

print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

E
x

e
rc

is
e

Extend this code to solve the goose/duck problem so that at the end a variable Ft

stores the tension in the rope.

15/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Variables

Note that in Python the = symbol means something quite different from = in Math.

In Math, we can say things like x + 5 = 4x − 1. But in Python we can only have the name

of a variable on the left side of =.

To pronounce a statement like x = 3 + 4 , we say “x gets 3 plus 4”, or “x gets 7”.

16/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Introducing strings

A string is a way of storing a collection of characters. This could be a word, or several

words, or a paragraph.

In Python there are several ways to create a string, but the simplest is just to use

quotation marks:

print("hello world!")

print("A force of 1.4 N applied over 2.72 m does", 1.4 * 2.74, "J of work.")

There are many ways we can use strings, but for now, we will use them to help make our

code output more understandable.

E
x

e
rc

is
e

Use print statements to display a message describing the kinetic energy of a 4.2 kg

mass moving at 2.4 m/s. (Recall: E k
= 1

2mv2)

13/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

A simple Physics problem

E
x

e
rc

is
e

A 5 kg goose is standing on ice on the top of Dana Porter

library, connected using rope and a pulley to a 2 kg duck

which is sliding down the wall.

Neglecting air resistance and friction:

1 How fast are the birds accelerating?

2 What is the tension in the rope?

Assume the gravitational pull on campus is 9.8 m/s2.

14/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Step by Step evaluation and State Diagrams

A program is a sequence of instructions.

When we run it, they are executed, line by

line, in order.

Later calculations often depend on the value

of earlier calculations.

It’s sort of like reading a recipe.
Mduck = 2.0
Mgoose = 5.0
Fg = 9.8 * Mduck

print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

As the computer steps through the code, it

keeps track of the value of each variable, in a

table, that we can visualize as a state

diagram.

17/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Step by Step evaluation and State Diagrams

If we assign a new value to a variable,

it now refers to a different value:
x = 3

print("x is:", x)
x = x + 3

print("x is:", x)
y = x
print("x is", x, "and y is", y)

The state diagram changes.

Notice: we do not overwrite the values. We

remove the arrow, and make a new one.

!

This will matter later, so get in the habit of thinking this way.

Using = changes the arrows, not the values.

If we assign a variable to another variable, they are both arrows pointing at the

same value.

18/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Step by Step evaluation and State Diagrams

E
x

e
rc

is
e Use a state diagram to track the values of all the variables:

foo = 3 * 2
bar = foo
foo = bar * 2
qux = foo + bar

19/43 CS 114 - Winter 2025 Module 1, Section 1: Course information and goals

Mathematical functions

So far, we can do some calculations, but only using the basic operations (+, - , *, / , etc),

like a simple calculator.

To turn our Python into a “scientific” calculator, we will add one line at the top of our code:

import math

This gives us access to many mathematical functions, including math.sin , math.cos ,
math.asin , math.log , and more:

print("The cosine of 1 (radians) is:", math.cos(1.0))

E
x

e
rc

is
e

Use Python to calculate the value of
sin(1 + cos(2))

tan(3)

The function math.radians converts an angle in degrees to radians.

print(math.sin(math.radians(45))) displays 0.707...

20/43 CS 114 - Winter 2025 Module 1, Section 2: Functions and evaluation

Read The Fine Manual

The help command will show us the documentation:

help(math) displays help on the math module

help(math.cos) displays help on the math.cos function

E
x

. Use the documentation of the math module to see how to use Python to calculate
log

3 30.

21/43 CS 114 - Winter 2025 Module 1, Section 2: Functions and evaluation

Machines Should Work, People Should Think

With the math module, we can do anything we can do with a scientific calculator. But if we

want to do similar calculations, we need to duplicate our work.

Suppose we want to calculate the tension twice, with a 2 kg duck and a 3 kg duck:

Mduck = 2.0
Mgoose = 5.0
Fg = 9.8 * Mduck

print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

Mduck = 3.0
Mgoose = 5.0
Fg = 9.8 * Mduck

print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

One important aspect of computer science: be lazy.

If we’re working, we’re doing something wrong.

Writing something twice is work.

There should be a better way, and there is: we can define a new function.

22/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Defining Functions

An example function definition:
def duck _goose (Mduck , Mgoose) :

Fg = 9.8 * Mduck
print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

It contains:

1 the keyword def ,

2 the name of our new function ,

3 inside brackets (,) : zero or more

parameters ,

4 a colon : ,

5 an indented block of code.

A definition itself does nothing.

We need to call the function, like:
duck _goose(2.0, 5.0)

or
duck _goose(2 + 1.7/2, 2.0 ** 3)

A function call contains:

1 the name of the function,

2 inside brackets “() ”, arguments

corresponding to the parameters.

This way we can call it with different values for Mduck and Mgoose .

23/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Defining Functions

E
x

e
rc

is
e

Modify the following duck _goose function so the gravitational pull g is also a parameter,

instead of always being 9.8 m/s2.
def duck _goose(Mduck, Mgoose):

Fg = 9.8 * Mduck

print("Fg is:", Fg, "N")
mtotal = Mduck + Mgoose
accel = Fg / mtotal

print("accel is:", accel, "m/s ** 2")

E
x

e
rc

is
e

Imagine a 2 kg duck is wearing a 1.8 kg space suit, and a 5 kg goose is wearing a

4 kg space suit. Don’t change your function. Call it twice to determine:

1 The acceleration of the birds on Mars, where the gravitational pull is 3.721 m/s 2;

2 The acceleration of the birds on the Moon, where the gravitational pull is 1
6 of

what it is on Earth.

24/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Functions calling functions

A function can call any function that is defined, even one we wrote.

Now that our duck _goose function has three parameters, we can write another function to

do the calculation more than once:
def duck _goose _twice(mass1, mass2, pull1, pull2):

print("On a planet where the gravitational pull is", pull1)
duck _goose(mass1, mass2, pull1)

print("On a planet where the gravitational pull is", pull2)
duck _goose(mass1, mass2, pull2)

25/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Functions calling functions

E
x

e
rc

is
e

Consider the code below. Do not run it.

Think carefully through what it will do. Write down what it will print.

def baz(a, b):
print(a, "times", b, "is", a * b)

print(a, "plus", b, "is", a + b)

def bar(y):

print("y is", y)

print("and its square is", y ** 2)

def foo(x):
bar(x)
bar(x * 2)
bar(x + 2)

bar(7)
bar(3)

26/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Defining Functions

The momentum of an object of mass m and velocity v is given by p = mv.

The kinetic energy of this object is given by Ek
= 1

2mv2.

E
x

e
rc

is
e

Write a function basic _properties(m,v) that displays two messages, indicating the

momentum and kinetic energy of an object.

For example, basic _properties(3,5) should print something like:
The momentum is 15 kg *m/s
The kinetic energy is 37.5 J

27/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Fruitful functions

Consider this code:
v = 4 + math.cos(0)

print(v)

The math functions, such as math.cos and math.log , don’t print anything on the screen.

Instead, they return a value, and the code that called can then do something with the

value: print it, or do more arithmetic, or whatever.

To do this, we use the return statement. While reading a program “like a recipe”, the

moment we encounter a return statement, we stop evaluating the program. Imagine the

“call” has that value.

To write a function like d (x) = 2x : def double(x):
return 2 * x

y = double(18) + 6

print(y)

28/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Fruitful functions

E
x

e
rc

is
e

Write a function area that takes the radius of a circle, and returns its area.

Recall that the area of a circle is given by A (r) = π r2.

Use the constant math.pi .

Use your function to calculate the total area of a collection of circles: what do you get

when you call
print(area(1) + area(2) + area(3)) ?

29/43 CS 114 - Winter 2025 Module 1, Section 3: User-Defined Functions

Incremental Development

We want a function to calculate the distance between two points (x1, y1
) and (x2, y2

).

1 Start by making a function that does not work, but returns something.
def distance(x1, y1, x2, y2):

return 0.0

2 Check that it does what we expect.
print(distance(0, 0, 4, 3))

3 Add code to calculate a partial answer; debug to make sure the pieces make sense:
def distance(x1, y1, x2, y2):

xdiff = x2 - x1
ydiff = y2 - y1

print("xdiff is", xdiff, "and ydiff is", ydiff)
return 0.0

print(distance(10, 10, 14, 13))

4 Make small changes and repeat. Make it sure makes sense to you.

5 Once debugged, remove extra print statements.

30/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

The Docstring

Recall that if we say something like help(math.cos) , it shows us information on how to use

the math.cos function. But if I ask for help(distance) , it displays very little information.

To fix this, when we write a function, we start by writing a docstring that explains what

the function is supposed to do. As the first statement in a function, we put a string that

contains the help message. Write this string using triple-double quotes """like this""" .
def distance(x1, y1, x2, y2):

"""Calculate the distance between (x1, y1) and (x2, y2)."""
xdiff = x2 - x1
ydiff = y2 - y1
return math.sqrt(xdiff ** 2 + ydiff ** 2)

!
You must write a docstring for every function you write.

We will not mark code that is not properly documented.

31/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Docstring conventions

The Python community has developed conventions that make docstrings easier to

understand.

Always refer to each parameter by name, and say what the parameter is for.

Don’t write something like """Calculate the distance between the two points.""" .

Write your sentence as if you are telling the function what to do.

Write something like: """Return the area of a circle of radius r.""" .

Don’t write: """Returns the area of a circle of radius r.""" .

Don’t describe what it does or how it does it.

Don’t write something like """Return pi * r ** 2.""" .

Remember, this string must be the first statement in the function.

No code may come before it.

When you call help on your function, it will display your docstring.

32/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Docstring conventions

An example:
def refraction _angle(theta1, c1, c2):

"""Following Snell's law, calculate the angle that a ray of light at
angle theta1 takes, when it moves from a medium with speed of
light c1 to a medium with speed c2.
""
"return math.asin((c2 / c1) * math.sin(theta1))

The community describes this, with more detail, in PEP 257 - Docstring Conventions.

33/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Type Annotations

So far, the only values we have seen are numbers, like 42 and 3.14 , and strings such as
"hello world" and """Return the area of a circle of radius r."""

In Math class, we often make a distinction between integers (Ú) like − 3, 0, and 42, and

real numbers (Ò) like 3.14, π, and

√
2.

In Python, these values are of different types. When we write functions, we want to

indicate what type its parameters are, and what type the value is that it returns.

We use the type str for strings, int for integers, and float for real numbers.

34/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Type annotation syntax

The type annotations are part of the def statement. Example:
def distance(x1: float, y1: float, x2: float, y2: float) -> float:

"""Calculate the distance between (x1, y1) and (x2, y2)."""
xdiff = x2 - x1
ydiff = y2 - y1
return math.sqrt(xdiff ** 2 + ydiff ** 2)

1 To indicate the type that each parameter takes, after the name of each parameter,

write a colon and a space (:) then the type.

2 To indicate the type that the function returns, between the close bracket and the

colon, write a little arrow surrounded by spaces (->) followed by the type.

E
x

e
rc

is
e

Annotate the function area :
def area(r):

"""Return the area of a circle of radius r."""
return math.pi * r ** 2

35/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

What is the difference between int and float ?

Consider how to annotate these:
def force(mass, accel):

"""Return the force needed to accelerate mass kg at accel m/s ** 2."""
return mass * accel

def total _electrons(n, peratom):
"""Count electrons in n atoms, each containing peratom electrons."""
return n * peratom

mass and accel are continuous values; we can change them by any amount.

n and peratom are discrete, whole values; we can only change them by integer amounts.

So we write:
def force(mass: float, accel: float) -> float:

def total _electrons(n: int, peratom: int) -> int:

If it’s a measurement, it’s float (e.g. 3.2 N, 1.107 kg/l, or 6.0 C/s)

If you’re counting something, it’s int (e.g. 32 He atoms, 12 monkeys, or a charge of − 1 e.)

36/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Testing exact values with check.expect

In creating distance , we used the idea of incremental development.

This idea is so important that programmers have created tools to make it easier to do.

When we ran the first cell of the module 01 start code, it installed the check module.

To use it, at the top of your code write:

import check

Now we have a new function called check.expect . It takes three arguments:

1 a str that we use as a name for the test,

2 an expression that is a call to the function we are testing,

3 an expression that is the value the function call should return.

So we might say:

check.expect("a few atoms", total _electrons(5, 10), 50)

37/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

Testing inexact values with check.within

We work often with measurements, and these are float values.

But float arithmetic is slightly inexact; it is not the case that 0.2 + 0.1 equals 0.3 .

Any time we work with float values, we will use check.within . It is the same, but takes a

fourth argument. It takes:

1 a str that we use as a name for the test,

2 an expression that is a call to the function we are testing,

3 an expression that is the value the function call should return.

4 a positive float value that says how close the two values must be to pass the test.

So we might say:

check.within("a little force", force(5.0, 10.0), 50.0, 0.0001)

The test passes if force(5.0, 10.0) is between 50.0 - 0.0001 and 50.0 + 0.0001 .

38/43 CS 114 - Winter 2025 Module 1, Section 4: The Design Process

	L2
	Slide 1: Warmup
	Slide 2: The power of change
	Slide 3: The power of change
	Slide 4: One step at a time
	Slide 5: Variable names
	Slide 6: Variable names
	Slide 7: Jupyter is weird
	Slide 8: Jupyter is weird
	Slide 9: Comments
	Slide 10: More power
	Slide 11: Pythogoras
	Slide 12: Smarter imports
	Slide 13: Too many things!
	Slide 14: Reusing (functions)
	Slide 15: Back to Pythagoras
	Slide 16: Functions
	Slide 17: Functions
	Slide 18: Functions
	Slide 19: Functions
	Slide 20: Functions
	Slide 21: Functions
	Slide 22: Functions
	Slide 23: Functions and variables
	Slide 24: Functions and variables
	Slide 25: Pedantry aside
	Slide 26: Functions calling functions
	Slide 27: Returning
	Slide 28: Returning
	Slide 29: Returning
	Slide 30: Functions calling functions
	Slide 31: To return or not?
	Slide 32: None is Hell
	Slide 33: None is Hell
	Slide 34: Bugs, bugs, bugs!
	Slide 35: Debugging
	Slide 36: Debugging
	Slide 37: Avoiding bugs
	Slide 38: Avoiding bugs: printing
	Slide 39: Avoiding bugs: printing

	Old
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

