
Warmup (L3)
Create a cell in Jupyter that has a different
behavior the first time you run it than the
second time you run it.

Note 1: You may need to create and run
another cell first to set up the environment

Note 2: Your cell may show an error when you
run it, but as long as it also has different
output it works

Bonus: Make the cell have a different behavior
every time you run it

Bugs, bugs, bugs!
CS114 L3 (M1)

Debugging

• Time for debugging!

from math import sqrt

def pythagoras(a, b):

sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras3(4, 5, 6))

Debugging

One thing to be careful of when debugging:
errors happen when code runs, so if you
don’t run a buggy function, you won’t see
the problem!

from math import sqrt

def pythagoras(a, b):

sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras(4, 5))

Avoiding bugs

• Develop incrementally (one small step at
a time), using print to spot-check

• Let’s make a distance function (distance
between two points) incrementally…

def distance(x1, y1, x2, y2):

…

Avoiding bugs: printing

• Make sure whatever you print is
descriptive/unique enough that you know
which is which

def pythagoras(a, b):
asquared = a ** 2
print("a squared:", asquared)
bsquared = b ** 2
print("b squared:", bsquared)
r = sqrt(asquared + bsquared)
print("result:", r)
return r

Avoiding bugs: printing

•

def pythagoras(a, b):
asquared = a ** 2
print("a squared:", asquared)
bsquared = b ** 2
print("b squared:", bsquared)
r = sqrt(asquared + bsquared)
print("result:", r)
return r

Don’t be afraid to introduce variables just so that
you can print something from the middle of a

calculation!

Avoiding bugs: printing

• When you’re done debugging, make sure
you remove the prints. They’ll confuse
our tests!

• You can also comment out prints, so you
can remove them without forgetting them

def hypotenuse(a, b):

 # print("a was", a)

 return sqrt(a**2 + b**2)

Avoiding bugs: documentation

• Part of avoiding bugs is good documentation

• You shouldn’t name a function
“pythagoras”

• The Pythagorean theorem is an implementation
detail

• When you’re calling the function, you don’t care
how it’s implemented

• It should’ve been named “hypotenuse”

Avoiding bugs: documentation

• Remember the help function?

• We can (and should!) document our
functions in the same way, with docstrings

• Let’s add a docstring to pythagoras

Avoiding bugs: documentation

def pythagoras(a, b):

 """

 Return the length of the

 hypotenuse of a right

 triangle with side lengths a

 and b.

 """

 return sqrt(a**2 + b**2)

Docstrings

• The docstring is the first statement in a
function

• Triple-quote can be used to make a multi-
line string anywhere; it’s only a docstring
when it’s the first statement

def sillystring():

 return """

 Hello world!

 """ # This is not a docstring

Docstrings

• In this course, you must write a docstring
for every function you write

• Your code is graded not just for
correctness (doing what it’s supposed to)
but for documentation and readability!

Docstrings

• Conventions for good docstrings:

• Refer to parameters by name

"""… with side lengths a and b."""

 not
"""… with the two sides."""

Docstrings

• Conventions for good docstrings:

• The docstring should be a command for the
function to obey

"""Return the length…"""

 not
"""Computes the length…"""

Docstrings

• Conventions for good docstrings:

• Describe what it does, not how it does it

"""Return the length…"""

 not
"""Return sqrt(a**2+b**2)"""

Comments
• Comments (with #) should be used to clarify.

• It’s assumed that whoever’s reading the code
knows English and Python, so

• If your variable names are good and the steps
are obvious, you may not need comments to
make the code understandable.

• but, err on the side of caution: use comments
where it might be confusing.

• Assume the reader is as stupid as possible
while still being able to read English and Python

Avoiding bugs: types

• We’ve seen numbers and we’ve seen
strings

• Look at the result of hypotenuse: note
how hypotenuse(3, 4) is written as
5.0, not just 5

• Internally, Python stores integers and
rationals differently

• It is often useful to distinguish between
them

Numeric types

• In Python, we can store a number as an
int or a float. int corresponds to
integers. float corresponds to rationals
(and is used to approximate reals).

• Since all integers are rationals, we can
store an integer as a float.

• If a number could have been a non-integer,
it’s usually a float, even if it is an integer in
practice!

Numeric types

• In Python, we can store a number as an
int or a float. int corresponds to
integers. float corresponds to rationals
(and is used to approximate reals).

• Note “corresponds to” here. An int can
store any integer (as long as your
computer has enough memory!), but
floats have limited capacity. It’s hard to
intuit about, so just remember: it’s
rounded!

Float?

• “float” stands for “floating point”.

• It means the point (the dot separating the
integer part from the fractional part) can
float (be anywhere within the number)

• Don’t overthink the name. It’s just a
name.

Numeric types

• It mostly won’t matter how a number is
stored (float or int)

• … but it can. We’ll see situations later
where it matters.

• You can convert in a few ways:
float(42) # 42.0

int(41.999) # 41

round(41.999) # 42

Documenting types

• It’s often useful to document what type
you expect something to be

• If it’s the wrong type, your code will do
something unexpected!

• When writing a function, you can (and
should!) document the types of its
parameters and the type it returns

Documenting types

def hypotenuse(a: float, b: float) -> float:

 return sqrt(a**2 + b**2)

• These type annotations are
documentation. Even if they’re wrong,
your code will run.

• If you set up Jupyter with
Assignment-00.ipynb, it will warn you
when they’re wrong

Documenting types

• Although documentation, annotations are
so-called checked documentation

• That is, they don’t change your code (just
document it), and yet we can check that
they’re correct

• If you don’t use types as you describe
them, you’ll get typing errors, but your
code will still run

int vs float

• Every integer is a rational, so it’s tempting to write
float everywhere

• This is poor documentation! If you expect an integer,
write int

def stableNeutrons(protons: int) -> float:
 """
 Return approximately how many neutrons
 are needed to stabilize a nucleus with
 this many protons.
 """
 return protons * 1.5

Type errors

• Using an unexpected type won’t always
stop your code from running

• But it can. E.g., trying to treat None like a
number will cause an error

print(42)/(7) # Note wrong parentheses

• Let’s explore the errors reported by the
above code (it’s a lot!)

Typing errors vs type errors

• Typing errors (or type-checking errors)
are about the documented types. Code
doesn’t have to run to check, and errors
don’t prevent code from running.

• Type errors happen while code is running,
and stop it from running further.

• Both are about types, and the names are
confusing, but they’re distinct

Learning to read errors
• Making errors readable and understandable

is an area of active research (no, really!)

• For typing errors:

• Look for “expected” and “got”.

• Think about which way data is moving (into
parameters, out of returns)

• For type errors and other errors:

• Start from the end and work your way
backwards to understand where it’s happening

Learning to read errors

• Let’s explore some errors

• print(42/7
def hello():
 print("World")

• def return():
 return 42

• def curious():
 return sqrt(9)

• fancy:fancy:variable = 42

• def weird(x):
 x = x * 5
 return x

Testing
CS114 L3 (M1)

Testing

• Bad development: keep poking at it until
it looks right

• Good development: write examples of
how it should behave, then write it until it
does behave

• Running these examples is testing

Assertions

• Python has a built-in technique for
testing: assert

as·​sert (asserted; asserting; asserts)
transitive verb
1a: to state or declare positively and often
forcefully or aggressively
 (— Merriam Webster dictionary)

• You assert (declare) something to be true,
then fix your code ’til it is ☺

Assertions

assert hypotenuse(3, 4) == 5, "3-4-5 triangle"

The test
(what you want to be true)

Name for the test
(Documentation)

Assertions

assert hypotenuse(3, 4) == 5, "3-4-5 triangle"

Since = is variable
assignment, == is equality

Assertions

assert hypotenuse(3, 4) == 5, "3-4-5 triangle"

But do not use == with floats!!!
(Remember, they’re rounded!)

Assertions

assert hypotenuse(3, 4) == 5, "3-4-5 triangle"

Note no parentheses. assert is a keyword, not a
function! If you add parentheses with the test

name, it won’t do what you think!

Let’s look at
assert(1 == 0, "Math is broken")

Testing with floats

• floats have limited precision

• Internally, they’re scientific notation in base-2, so have
limited base-2 significant figures, but don’t try to intuit
about base-2 scientific notation…

• The precision can go wrong in very
surprising ways:

assert 0.3-0.2 == 0.1, "Math too simple to fail"

Imprecise numbers, imprecise tests

• Always test floating points with a range,
called the tolerance, to avoid precision
problems

• Simplest way to test with tolerance is
𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• In Python, that looks like this:

assert abs((0.3 – 0.2) – 0.1) < 0.001, "Precision problems!"

Imprecise numbers, imprecise tests

assert abs((0.3 – 0.2) – 0.1) < 0.001, "Precision problems!"

abs is the absolute
value function

< is less-than

Range here is 0.001
(Don’t overthink it)

Result Expected

Imprecise numbers, imprecise tests

• Use similar code any time your numbers
won’t be integers

assert abs(hypotenuse(4, 5) - 6.4031242) < 0.001, "…"

Code style

• In this course, every function must have

• A docstring,

• parameter and return types, and

• at least two test assertions (other than the
ones we provide you)

Code style

• We set two tests as a minimum

• For most functions, it won’t be enough

• Think about corner cases

• … but don’t overthink it. Just make up
some tests.

Other assertions

• assert is often used for tests, but can
also be used for other checks

• For instance, if we want to make sure our
arguments are positive:

def hypotenuse(a: float, b: float) -> float:

 assert a > 0, "a must be positive"

 assert b > 0, "b must be positive"

 return sqrt(a**2 + b**2)

Module summary
CS114 L3 (M1)

Module summary

• We’ll be writing Python in Jupyter

• Imperative programming language: give
your computer a sequence of commands

• Calculation in Python

• Computation =
calculation + repetition + decision-making

• Functions box up behavior

• Programming is mostly fighting bugs

	L3
	Slide 1: Warmup (L3)
	Slide 2: Bugs, bugs, bugs!
	Slide 3: Debugging
	Slide 4: Debugging
	Slide 5: Avoiding bugs
	Slide 6: Avoiding bugs: printing
	Slide 7: Avoiding bugs: printing
	Slide 8: Avoiding bugs: printing
	Slide 9: Avoiding bugs: documentation
	Slide 10: Avoiding bugs: documentation
	Slide 11: Avoiding bugs: documentation
	Slide 12: Docstrings
	Slide 13: Docstrings
	Slide 14: Docstrings
	Slide 15: Docstrings
	Slide 16: Docstrings
	Slide 17: Comments
	Slide 18: Avoiding bugs: types
	Slide 19: Numeric types
	Slide 20: Numeric types
	Slide 21: Float?
	Slide 22: Numeric types
	Slide 23: Documenting types
	Slide 24: Documenting types
	Slide 25: Documenting types
	Slide 26: int vs float
	Slide 27: Type errors
	Slide 28: Typing errors vs type errors
	Slide 29: Learning to read errors
	Slide 30: Learning to read errors
	Slide 31: Testing
	Slide 32: Testing
	Slide 33: Assertions
	Slide 34: Assertions
	Slide 35: Assertions
	Slide 36: Assertions
	Slide 37: Assertions
	Slide 38: Testing with floats
	Slide 39: Imprecise numbers, imprecise tests
	Slide 40: Imprecise numbers, imprecise tests
	Slide 41: Imprecise numbers, imprecise tests
	Slide 42: Code style
	Slide 43: Code style
	Slide 44: Other assertions
	Slide 45: Module summary
	Slide 46: Module summary

