
Warmup (L4)
• Write a function
checkWithin(result, expected, tolerance, name)

that generalizes our assert-based
tolerance checking

• (That is, it asserts that result is within the
tolerance of expected, with name as the
name/message for the assertion)

• Note: Don’t use this in your submissions;
MarkUs won’t detect the separate tests ☺

CS114
L4 (M2)

Making decisions
CS114 L4 (M2)

Assertions

• Remember “==” and “<” from our
assertions?

• What do they actually do?

print(hypotenuse(4, 5) < 7)

True

Conditionals

• hypotenuse(4, 5) < 7 is simply a
fact: it is true

• We can conditionalize code based on facts

• That is, rather than just asserting that
something is true as a test, we check if it’s
true, then choose what to do next

Why?

• Remember:
computation =

calculation +
repetition +
decision making

• We did calculation in Module 1

• Conditions will give us decision making

def pos(x: float) -> float:

"""

If x is not zero, return the absolute value of x.
Otherwise, return 1.

"""

if x < 0:

return -x

elif x == 0:

return 1

else:

return x

assert pos(42) == 42, "Absolute value of positive is positive."

assert pos(-42) == 42, "Absolute value of negative is positive."

assert pos(0) == 1, "Special case pos(0) is 1."

Decision making

This code only runs if x < 0

This code only runs if x == 0
(elif means “else if”)

This code only runs if x > 0
That condition is implicit: it

only runs if neither previous
case matched.

def pos(x: float) -> float:

 """

 If x is not zero, return the absolute value of x.
 Otherwise, return 1.

 """

 if x < 0:

 return -x

 elif x == 0:

 return 1

 else:

 return x

assert pos(42) == 42, "Absolute value of positive is positive."

assert pos(-42) == 42, "Absolute value of negative is positive."

assert pos(0) == 1, "Special case pos(0) is 1."

Decision making

Indenting again to show what
happens conditionally and

what doesn’t

Decision making
def clamp(x: float, minVal: float, maxVal: float) -> float:

 """

 If x is between minVal and maxVal, return x. Otherwise return minVal
 if x is below the range, or maxVal if it's above the range.

 """

 assert minVal <= maxVal, "minVal cannot be greater than maxVal"

 if x < minVal:

 return minVal

 if x > maxVal:

 return maxVal

 return x

assert clamp(-12, 0, 10) == 0, "Minimum value works (0)"

assert clamp(12, -15, -3) == -3, "Maximum value works (negative)"

assert clamp(4, -10, 10) == 4, "In-range value works (across 0)"

... more tests ...

Decision making
def clamp(x: float, minVal: float, maxVal: float) -> float:

 """

 If x is between minVal and maxVal, return x. Otherwise return minVal
 if x is below the range, or maxVal if it's above the range.

 """

 assert minVal <= maxVal, "minVal cannot be greater than maxVal"

 if x < minVal:

 return minVal

 if x > maxVal:

 return maxVal

 return x

assert clamp(-12, 0, 10) == 0, "Minimum value works (0)"

assert clamp(12, -15, -3) == -3, "Maximum value works (negative)"

assert clamp(4, -10, 10) == 4, "In-range value works (across 0)"

... more tests ...

We write <= for ≤ and >= for ≥

Decision making
def clamp(x: float, minVal: float, maxVal: float) -> float:

 """

 If x is between minVal and maxVal, return x. Otherwise return minVal
 if x is below the range, or maxVal if it's above the range.

 """

 assert minVal <= maxVal, "minVal cannot be greater than maxVal"

 if x < minVal:

 return minVal

 if x > maxVal:

 return maxVal

 return x

assert clamp(-12, 0, 10) == 0, "Minimum value works (0)"

assert clamp(12, -15, -3) == -3, "Maximum value works (negative)"

assert clamp(4, -10, 10) == 4, "In-range value works (across 0)"

... more tests ...

else/elif are not required

Still imperative

• Anything indented under if is executed
conditionally

• Anything after if (unindented) is
executed unconditionally. It’s simply run in
order.

• Except for early return

• Let’s add some prints to our clamp
function in Jupyter to understand what is
and isn’t run

Decision making
def clamp(x: float, minVal: float, maxVal: float) -> float:

 """

 If x is between minVal and maxVal, return x. Otherwise return minVal
 if x is below the range, or maxVal if it's above the range.

 """

 assert minVal <= maxVal, "minVal cannot be greater than maxVal"

 if x < minVal:

 x = minVal

 if x > maxVal:

 x = maxVal

 return x

assert clamp(-12, 0, 10) == 0, "Minimum value works (0)"

assert clamp(12, -15, -3) == -3, "Maximum value works (negative)"

assert clamp(4, -10, 10) == 4, "In-range value works (across 0)"

... more tests ...

Variable naming aside

• I told you to use descriptive names, but I
just named my parameter “x”

• Names are for what the variable means to
the function, not to whoever calls the
function

• In the case of clamp, x means nothing to
us, so x is as good as any other name.

In-lecture quiz (L4)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: Which of these Python function definitions is valid?

• def return(x: int) -> int: # A
 return x

• def roundBadly(x: float) -> int: # B
 if x < 0:
 return int(x) – 1
 return int(x)

• def greater(x: float, y: float) -> float: # C
 if x > y:
 return x
 return y

• void iGotLost(const std::string &user) { # D
 cout << "Aren’t you glad you’re learning "
 "Python instead of C++?" <<std::endl;
}

In-lecture quiz (L4)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What will this code print?
def f(x: int) -> None:
 if x > 5:
 print("Big")
 print("Small")
f(42)

• Big A

• Small B

• Big C
Small

• Nothing D

Boolean logic
CS114 L4 (M2)

Booleans

• True and False are values

• Although it’s weird, you can, e.g., store it
in a variable:
x = hypotenuse(4, 5) < 7

• Just as True is a value, so is False:

print(hypotenuse(4, 5) > 7)

False

Booleans

• These are called boolean values, named
for logician George Boole

• For the type checker, “bool”

• Math with booleans is called boolean logic

• We get booleans with our comparators:

==, !=, <, <=, >, >=

!= for ≠ (not equal to)

Multiple conditions

• You can nest conditions

if x >= minVal:
 if x <= maxVal:
 return x
 else:
 return maxVal
else:
 return minVal

• Let’s add some prints to understand this

Multiple conditions

• There are also operators to combine
conditions:

if x >= minVal and x <= maxVal:
 return x
elif x < minVal:
 return minVal
else: # x > maxVal
 return maxVal

• and for both, or for either

It’s sometimes useful to
comment an else to
make it clear when it

happens.

Nesting vs. combining

• When you put an if inside of another if,
that’s called nesting conditionals

• Sometimes it’s unavoidable (or would be
ugly to avoid)

• In particular, when you need to nest a condition
and do something else

• When you can avoid it, you usually should. It
results in pyramids of doom (code so nested
that it gets indented so far that it’s annoying
to read)

A note on or

• In common use, “or” can be ambiguous

• If CS114 is my favorite class or I fail it, I’ll
remember it well.

• What if CS114 is your favorite class and you
fail it?

• In CS, “or” always means “and/or”, so,
e.g., “1 == 1 or 2 == 2” is true.

Complex combos

• You can also invert a condition with not, and
group things with parentheses just like in
numerical math

if not (x < minVal or x > maxVal):

 return x

elif x < minVal:

 return minVal

else: # x > maxVal

 return maxVal

Mind your precedence

• BEDMAS is now BEDMASCN&O
 (pronounced bed-masc-nando)

• Brackets/parentheses, exponents, division and
multiplication, addition and subtraction, …

• Conditionals (==, !=, <, <=, >, >=)

• not

• and

• or

Mind your precedence

• Confused?

• When in doubt, just use parentheses to
make it clear

• Don’t double up (e.g., ((a<b))).
Otherwise, it’s never bad style.

• (Using parentheses around assert isn’t bad
style, it’s just incorrect.)

Booleans are values

• Here’s a new version of clamp:

def clamp(x: float, minVal: float, maxVal: float) -> float:
 """
 If x is between minVal and maxVal, return x. Otherwise
 return minVal if x is below the range, or maxVal if it’s
 above the range.
 """
 if inRange(x, minVal, maxVal):
 return x
 elif x < minVal:
 return minVal
 return maxVal

• Let’s write inRange to work with it.

There’s no comparison here (at
least, not directly!). We got a bool

because that’s what inRange
returned!

Booleans are values

• Here’s a new version of clamp:

def clamp(x: float, minVal: float, maxVal: float) -> float:
 """
 If x is between minVal and maxVal, return x. Otherwise
 return minVal if x is below the range, or maxVal if it’s
 above the range.
 """
 if inRange(x, minVal, maxVal):
 return x
 elif x < minVal:
 return minVal
 return maxVal

• Let’s write inRange to work with it.

Making the x > maxVal condition
totally implicit is poor style,

because it’s unclear. I did it here
just to show an elif without an

else.

The power of abstraction
CS114 L4 (M2)

Nonobvious conditions

• Let’s write a function isEven to check if
an integer is even.

• None of our comparators look like “is
even” or “divisible by”…

• New operator! %

• Remainder after division, e.g., 5%2==1

• Called “modulo”

Modulo and quotient

• In math, remainder after division is
usually paired with quotient to keep
division in integers

• We can do the same to keep division in
ints.

• Quotient is // (two slashes)

Modulo

• Wait, remainder after division still isn’t “is
even” or “divisible by”…

• A number is even if it’s divisible by 2…

• A number is divisible by y if the remainder
after division by y is 0…

• So, we can use ==: x%y==0

isEven

• With modulo in mind, let’s write our
isEven function.

def isEven(v: int) -> bool:

 """

 Returns True if v is even,

 False otherwise.

 """

 return v%2==0

	L4
	Slide 1: Warmup (L4)
	Slide 2: CS114
	Slide 3: Making decisions
	Slide 4: Assertions
	Slide 5: Conditionals
	Slide 6: Why?
	Slide 7: Decision making
	Slide 8: Decision making
	Slide 9: Decision making
	Slide 10: Decision making
	Slide 11: Decision making
	Slide 12: Still imperative
	Slide 13: Decision making
	Slide 14: Variable naming aside
	Slide 15: In-lecture quiz (L4)
	Slide 16: In-lecture quiz (L4)
	Slide 17: Boolean logic
	Slide 18: Booleans
	Slide 19: Booleans
	Slide 20: Multiple conditions
	Slide 21: Multiple conditions
	Slide 22: Nesting vs. combining
	Slide 23: A note on or
	Slide 24: Complex combos
	Slide 25: Mind your precedence
	Slide 26: Mind your precedence
	Slide 27: Booleans are values
	Slide 28: Booleans are values
	Slide 29: The power of abstraction
	Slide 30: Nonobvious conditions
	Slide 31: Modulo and quotient
	Slide 32: Modulo
	Slide 33: isEven

