
Warmup (L7)
This is our firstSquareGreaterThan function from
last lecture:

from math import sqrt
def firstSquareGreaterThan(x: int) -> int:

r = x + 1
while True:

sr = sqrt(r)
if int(sr) == sr:

return r
r = r + 1

Rewrite it such that it doesn’t use an infinite loop or
early return. That is, rewrite it so that the return is after
the loop.
(If you’re familiar with break, don’t use it either.)

Less obvious loops
• Let’s write our own terrible version of
math.sqrt

• We’ll do this by approximating, then
narrowing in until we find the value we want

• The math:

• 𝑟2 = 𝑛, so 𝑟 =
𝑛

𝑟

• Guess an 𝑟.

• If it’s too small,
𝑛

𝑟
is too big and vice-versa

• In either case, choose a value between 𝑟 and
𝑛

𝑟
until we’re close enough (within tolerance)

Less obvious loops

def sqrtButTerrible(n: float) -> float:

assert n >= 0, "Imaginary numbers

unsupported"

g = n/2

while abs(g*g - n) > 0.0001:

print(g)

g = (g + n/g) / 2

return g

for loops
CS114 L7 (M3)

More obvious loops

• The while loop is very powerful

• Most of the time we’ll just have a
grouping of values, and want to do
something for every value in the group

• We’ll see lots of groupings later, but focus
on the simple range grouping for now

Looping over a range of numbers

• Remember our original factorize
function? We just counted up to n.

• Python has a built-in facility to do these
common counting loops that frees us from
writing the obvious steps

def factorize(n: int) -> None:

for f in range(1, n):

if n%f == 0:

print(f)

Two new concepts

• Our new factorize introduced two new
concepts: the for loop and ranges

• ranges first: range(1, n) is a value that
represents a grouping of all the values in
the range from 1 to n

• Lower-bound inclusive (1 is included)

• Upper-bound exclusive (n is excluded)

• Type is range

Two new concepts
• for is an easier but less powerful kind of

loop than while

• It only lets us loop over a grouping

• (Such as a range, but we’ll see other groupings later)

• It’s easier by saving us from typing the
boilerplate (create a variable, update it
each loop)

• But, it’s less powerful because we can
only loop over a grouping

for vs while

def factorize(n: int) -> None:

for f in range(1, n):

if n%f == 0:

print(f)

def factorize(n: int) -> None:

f = 1

while f < n:

if n%f == 0:

print(f)

f = f + 1

for vs while

def factorize(n: int) -> None:

for f in range(1, n):

if n%f == 0:

print(f)

def factorize(n: int) -> None:

f = 1

while f < n:

if n%f == 0:

print(f)

f = f + 1

Initial value comes from the range. No need to
explicitly create the variable first.

for vs while

def factorize(n: int) -> None:

 for f in range(1, n):

 if n%f == 0:

 print(f)

def factorize(n: int) -> None:

 f = 1

 while f < n:

 if n%f == 0:

 print(f)

 f = f + 1

Update also comes from the range! No need to
update the variable in the loop.

Don’t be afraid to while

• for is easy to use and applies in a lot of
circumstances

• But it is strictly less powerful than while!
Anything you can do with for, you can do
with while, but while can do more!

• If you find yourself fighting a for loop
that won’t do what you want, maybe you
don’t want for

All the ranges
• range(from, to)

• From from (inclusive) to to (exclusive)

• range(to)

• From 0 to to (exclusive)

• Same as range(0, to)

• (Computer Scientists like to count from 0)

• range(from, to, by)

• From from (inclusive) to to (exclusive), but skip by
by. E.g. range(0, 4, 2) is {0, 2}

• by can be negative to count backwards

range restrictions

• range only counts integers. No floats
allowed!

• If the arguments don’t make sense,
there’s no error, but there’s no loop

It’s! Still! Imperative!

What will this print?

def countdown(from: int, to: int) -> None:

 for ct in range(from, to, -1):

 print(ct)

 to = to + 1

 print("Ignition")

It’s! Still! Imperative!

The range is computed before the loop
runs at all. Updating to does nothing.

def countdown(from: int, to: int) -> None:

 for ct in range(from, to, -1):

 print(ct)

 to = to + 1

 print("Ignition")

It’s! Still! Imperative!

Perhaps more surprising, updating ct does
nothing either. It steps through the range
with no concern to how it’s changed.

def countdown(from: int, to: int) -> None:

 for ct in range(from, to, -1):

 ct = ct + 1

 print(ct)

 print("Ignition")

In-lecture quiz (L7)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: How many times does this print “x”?
for i in range(1, 4):

 while i < 4:

 print("x")

 i = i + 1

A. 0 (no times)

B. 3

C. 4

D. 6

E. 12

In-lecture quiz (L7)

• Q2: How many times
does this print “x”?
i = 1

while i < 3:

 print("x")

 i = i + 1

 print("x")

 i = i + 1

 print("x")

 i = i + 1

 print("x")

 i = i + 1

A. 0 (no times)

B. 2

C. 3

D. 4

E. 8

https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

Functions are values too
CS114 L7 (M3)

You can overwrite print

• When talking about variable names, I said
nothing stops you from overwriting
print (other than common sense)

• Implication: print, and any functions you
make, are just variables!

• What’s in the variable?

Functions are values too

q = abs

print(q(-3))

print(abs(-3))

print(q == abs)

w = print

w(q(-42))

Consider carefully

q = abs q = abs(-3)

Consider carefully

q = abs

• q is now a function

• It’s the same
function as abs (it
is abs!)

• The code for abs
never ran here

q = abs(-3)

• q is an int

• It’s 3

• The code for abs
ran, and returned
3

Why???

• The power of abstraction!

• Previously we could work our way out,
reusing the smaller abstractions to build
bigger ones

• Now, we can abstract big things and fill in
the inside later as we have other small
things to do!

Typing functions

• The type for functions is in a module

• This is the first type we’ve seen for which we
need a module

• import typing

[…] f: typing.Callable […]

• from typing import Callable

[…] f: Callable […]

Why “callable”?

• Why is the type name “Callable” instead of
“Function”?

• “Callable” just means “you can call it”,
which is what we do with functions

• We’ll eventually see other kinds of things
that can be called, and they’re just as
good. So, we accept anything callable.

Prime factorization generalized

Let’s generalize our prime factorization
function to do anything (rather than just
print) for each factor

Prime factorization generalized
import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

 assert n > 0, "Only positive integers

 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 cb(f)

 least = f

 n = n // f

def printAsFloat(x: int) -> None:

 print(float(x))

primeFactors(42, printAsFloat)

Prime factorization generalized
import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

 assert n > 0, "Only positive integers

 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 cb(f)

 least = f

 n = n // f

def printAsFloat(x: int) -> None:

 print(float(x))

primeFactors(42, printAsFloat)

“cb” (for “callback”) is a common name for a function
argument when there’s no descriptive name for it

Debugging generalized

• It’s common to enable or disable
debugging prints globally instead of
commenting out each one

• How do we do that? By storing print in a
variable, then changing it when we don’t
want to print!

• But changing it to what…

Mocks

• Python provides a “don’t do anything”
function (mainly for testing):

from unittest.mock import Mock

doNothing = Mock()

doNothing() # Does nothing

Note that Mock is a function that returns a function!
Make sure to call it!

Debugging generalized
from unittest.mock import Mock

debug = print

def sqrtButTerrible(n: float) -> float:

 r = n / 2

 debug("Initial guess:", r)

 while abs(r**2 – n) >= 0.0001:

 r = (r + n/r) / 2

 debug("Guess in loop:", r)

 debug("Final value:", r)

 return r

Debugging generalized
from unittest.mock import Mock

debug = Mock() # One change, prints go away!

def sqrtButTerrible(n: float) -> float:

 r = n / 2

 debug("Initial guess:", r)

 while abs(r**2 – n) >= 0.0001:

 r = (r + n/r) / 2

 debug("Guess in loop:", r)

 debug("Final value:", r)

 return r

More examples

• Let’s do some more examples using
loops:

• Compute compound interest

• Compute pi using the Leibniz formula

𝜋 = 4 −
4

3
+
4

5
−
4

7
+
4

9
−⋯

Module summary
CS114 L7 (M3)

Module summary

• You’ve seen how to repeat in your code
with while and for loops

• while loops can have sophisticated
conditions

• Sometimes the condition is about when it
ends, sometimes when it continues

• for loops can use ranges

• Abstraction inverted: functions are values

	L7
	Slide 1: Warmup (L7)
	Slide 2: Less obvious loops
	Slide 3: Less obvious loops
	Slide 4: for loops
	Slide 5: More obvious loops
	Slide 6: Looping over a range of numbers
	Slide 7: Two new concepts
	Slide 8: Two new concepts
	Slide 9: for vs while
	Slide 10: for vs while
	Slide 11: for vs while
	Slide 12: Don’t be afraid to while
	Slide 13: All the ranges
	Slide 14: range restrictions
	Slide 15: It’s! Still! Imperative!
	Slide 16: It’s! Still! Imperative!
	Slide 17: It’s! Still! Imperative!
	Slide 18: In-lecture quiz (L7)
	Slide 19: In-lecture quiz (L7)
	Slide 20: Functions are values too
	Slide 21: You can overwrite print
	Slide 22: Functions are values too
	Slide 23: Consider carefully
	Slide 24: Consider carefully
	Slide 25: Why???
	Slide 26: Typing functions
	Slide 27: Why “callable”?
	Slide 28: Prime factorization generalized
	Slide 29: Prime factorization generalized
	Slide 30: Prime factorization generalized
	Slide 31: Debugging generalized
	Slide 32: Mocks
	Slide 33: Debugging generalized
	Slide 34: Debugging generalized
	Slide 35: More examples
	Slide 36: Module summary
	Slide 37: Module summary

