
Warmup (L8)

Write a function that computes pi using the
Leibniz formula, taking a callback to decide
when to stop. The callback should be a
function that takes a float (the current
approximation) and returns True to
indicate “stop now”, False otherwise.

𝜋 = 4 −
4

3
+
4

5
−
4

7
+
4

9
−⋯

M4: Strings and Lists
L8

Sequences
CS114 L8 (M4)

Sequences

• We discussed ranges for for loops

• I said it’s a “grouping”, but it’s more
specific: a sequence

• A sequence is a grouping of items with
some order

• range(1, 10): 1, 2, 3, 4, 5, 6, 7, 8, 9

• prime numbers: 2, 3, 5, 7, 11, …

We’ve already seen a sequence!

• Strings are just sequences of characters!
(“Character” is a general term for a glyph
used in language)

• You could say the characters have been
strung together. Yup, that’s the etymology.

for c in "Hello, world!":

 print(c)

Manipulating sequences

• As we’ve seen, we can loop over
sequences

• We can also get elements from sequences
by indexing

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

Manipulating sequences

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

(some sequence)[index] gets an element from a
sequence

Manipulating sequences

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

Surprised by the results?
Sequences in Python (and most programming

languages) are 0-indexed. That means that the index
for the first element is 0, not 1.

Aside on 0-indexing

• A common error is the off-by-one error,
which is exactly what it sounds like

• Some people think 0-indexing is the
cause of off-by-one errors

• When Julius Caesar was assassinated,
Julian leap years were done wrongly for
50 years due to an off-by-one error.
Humans just suck at counting.

Sequence length

• Get the length of any sequence with len

• We can use ranges to loop over elements
in a different way:

s = "Hello, world!"

for i in range(len(s)):

 print(s[i])

Modifying sequences

• You can access the individual characters in
a string, but you can’t change them

x = "Hello, world!"

x[1] = "u" # ERROR!

• strings are immutable (un-changeable)

• So are ranges

Lists
CS114 L8 (M4)

Lists

• Lists are sequences that can contain
anything

• Written with square brackets:
[2, 4, 6, 0, 1]

• Indexed like any sequence
x = [2, 4, 6, 0, 1]

x[2] == 6

Typing lists

• The type for a list is list

• But most of the time, you care what it’s a
list of!

• You can specify what’s in the list with, e.g.,
list[int]

• It is always the right style to type as
specifically as possible. Don’t use list
when you know what’s in it!

List example

• Let’s write a function to average a list of
numbers

def averageOf(l: list[float]) -> float:

 sum = 0.0

 for val in l:

 sum = sum + val

 return sum / len(l)

averageOf([2, 4, 6, 0, 1]) # 2.6

List example

• Let’s write a function to check if a value is in
a list sequence (any type of sequence!)

def contains(
 haystack: typing.Sequence,
 needle: typing.Any
) -> bool:
 for val in haystack:
 if val == needle:
 return True
 return False

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

The type for a sequence of any sort (string, list, range)
is in the typing module.

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

This type means “I don’t care”. In this case, we’re not
doing anything with the needle, so we don’t actually

care what it is.

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

Be wary of this type!
Remember: types are documentation! Don’t just write

“any” to make the type checker shut up!

The in operator

• We just wrote a contains function

• As it turns out, Python has this built in:

x = [2, 4, 6, 0, 1]

6 in x # True

"e" in "hello" # True

Lists are mutable

• Unlike the other sequences we’ve seen so
far, lists are mutable (changeable)

x = [2, 4, 6, 0, 1]

print(x) # [2, 4, 6, 0, 1]

x[1] = 8 # change an element just

 # like you’d change a

 # variable

print(x) # [2, 8, 6, 0, 1]

Using mutation

• Let’s replace every value in a list with the
running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:

 sum = 0.0

 for idx in range(len(l)):

 sum = sum + l[idx]

 l[idx] = sum / (idx+1) # 0-indexing!

 return sum / len(l)

Using mutation

• Let’s replace every value in a list with the
running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:

 sum = 0.0

 for idx in range(len(l)):

 sum = sum + l[idx]

 l[idx] = sum / (idx+1) # 0-indexing!

 return sum / len(l)

Values in the list are replaced (after we used them)

In-lecture quiz (L8)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: How many times does this print “x”?
for s in ["Excellent", "text", "box"]:

 for c in s:

 print(c)

A. 0 (no times)

B. 1

C. 2

D. 3

E. 4

In-lecture quiz (L8)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What does this print?
print(len(["Excellent", "text", "box"]))

A. Nothing or an error

B. Excellent text box

C. 3

D. 16

E. 18

Modeling memory
CS114 L8 (M4)

How data is stored

• The association of variable names with
values is part of the memory of the
computer

• Each variable is said to have a slot in
memory that stores a value

• With mutable lists, we’ll find that the
arrangement of memory is complicated!

• We need a mental model of how memory
works

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

A change in x was visible in y

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

And yet this changed nothing!

The graph model of memory

The graph model of memory

Memory slots store values

The graph model of memory

Numbers (both int and
float) and strings are

values.

The graph model of memory

List references are values!
The thing in the memory
slot is not the list, it is a

reference to the list!

(Shown as an arrow here. “Pointer”
usually has the same meaning.)

The graph model of memory

When we index, we copy
the value out of the slot,

so
i = y[4]

copies the 1
from y[4] to i

The graph model of memory

A for loop is just short-
hand for copying the

values out of the array, so
for i in y:

 …

does the same. Changing
i doesn’t change y[4],
because it was a copy!

The graph model of memory

• We’ve just added a major complication to
Python: reference types

• A reference type is a kind of value that is
stored as a reference, rather than the
content being stored directly in a slot

• Reference types allow spooky action at a
distance

• Let’s write a function to square every
value in a list

Reference types

def squareList(l: list[float]) -> None:

 for i in range(len(l)):

 l[i] = l[i]**2

No return??? Then how does this do anything?

Reference types

def squareList(l: list[float]) -> None:

 for i in range(len(l)):

 l[i] = l[i]**2

a = [2, 4, 6, 0, 1]

squareList(a)

a[0] == 4

a[1] == 16

…

Let’s draw what the
memory in this program
looks like on the board.

Example of mutating a list

• Let’s make a function to remove all the 2s
from the factors of a list of numbers

def removeFactorsOfTwo(l: list[int]) -> None:

 for idx in range(len(l)):

 val = l[idx]

 while val%2 == 0 and val > 1:

 val = val // 2

 l[idx] = val

Example of mutating a list

This function doesn’t return anything,
because it only modifies the list.

def removeFactorsOfTwo(l: list[int]) -> None:

 for idx in range(len(l)):

 val = l[idx]

 while val%2 == 0:

 val = val // 2

 l[idx] = val

Example of mutating a list

Why did we loop by indices instead of for
val in l? The value is copied out of the
grouping, so changing val does nothing!
def removeFactorsOfTwo(l: list[int]) -> None:

 for idx in range(len(l)):

 val = l[idx]

 while val%2 == 0:

 val = val // 2

 l[idx] = val

Aside on plurals

The plural of “index” is “indices” because
English was designed by sociopaths.

Again with feeling!

a = [1, 2, 3]

for v in a:

 v = v * 2

a is still [1, 2, 3]

a = [1, 2, 3]

for i in range(len(a)):

 a[i] = a[i] * 2

a is now [2, 4, 6]

Again, let’s draw what memory in these
programs looks like on the board

Isn’t this confusing?

• Yup!

• … what, you thought I was going to have a justification here?

Isn’t this confusing?

• Yup!

• Usual justification: copying things takes
time, so don’t. A list can be millions of
slots!

• However, using things by reference can
be helpful. Think of runningAverage or
squareList.

	L8
	Slide 1: Warmup (L8)
	Slide 2: M4: Strings and Lists
	Slide 3: Sequences
	Slide 4: Sequences
	Slide 5: We’ve already seen a sequence!
	Slide 6: Manipulating sequences
	Slide 7: Manipulating sequences
	Slide 8: Manipulating sequences
	Slide 9: Aside on 0-indexing
	Slide 10: Sequence length
	Slide 11: Modifying sequences
	Slide 12: Lists
	Slide 13: Lists
	Slide 14: Typing lists
	Slide 15: List example
	Slide 16: List example
	Slide 17: List example
	Slide 18: List example
	Slide 19: List example
	Slide 20: The in operator
	Slide 21: Lists are mutable
	Slide 22: Using mutation
	Slide 23: Using mutation
	Slide 24: In-lecture quiz (L8)
	Slide 25: In-lecture quiz (L8)
	Slide 26: Modeling memory
	Slide 27: How data is stored
	Slide 28: Why it’s hard
	Slide 29: Why it’s hard
	Slide 30: Why it’s hard
	Slide 31: The graph model of memory
	Slide 32: The graph model of memory
	Slide 33: The graph model of memory
	Slide 34: The graph model of memory
	Slide 35: The graph model of memory
	Slide 36: The graph model of memory
	Slide 37: The graph model of memory
	Slide 38: Reference types
	Slide 39: Reference types
	Slide 40: Example of mutating a list
	Slide 41: Example of mutating a list
	Slide 42: Example of mutating a list
	Slide 43: Aside on plurals
	Slide 44: Again with feeling!
	Slide 45: Isn’t this confusing?
	Slide 46: Isn’t this confusing?

