Warmup (L8)

Write a function that computes pi using the
Leibniz formula, taking a callback to decide
when to stop. The callback should be a
function that takes a float (the current
approximation) and returns True to
indicate “stop now”, False otherwise.

I

mT=4- +

OV e

Uil

NS

O |
I

M4 Strings and Lists

L8

Sequences

CS114 L8 (M4)

Sequences

« We discussed ranges for for loops

» | said it's a “grouping”, but it's more
specific: a sequence

« A sequence is a grouping of items with
some order

* range (1, 10):1,2,3,4,56,7,8,9

e prime numbers: 2,3,5,7, 11, ...

We've already seen a sequencel!

« Strings are just sequences of characters!
(“Character” is a general term for a glyph
used in language)

 You could say the characters have been
strung together. Yup, that's the etymology.

for ¢ in "Hello, world!":
print (c)

Manipulating sequences

« As we've seen, we can loop over
sequences

« We can also get elements from sequences
by indexing

print ("Hello, world!"[1])
&

print (range (1, 10) [2])
3

Manipulating sequences

print ("Hello, world!"[1])
o

print (range (1, 10) [24)

3

(some sequence) [index] gets an element from a
sequence

Manipulating sequences

print ("Hello, world!"[1])
S

print nge (1, 10)[2])
3

Surprised by the results?
Sequences in Python (and most programming
languages) are 0-indexed. That means that the index
for the first elementis O, not 1.

Aside on 0-indexing

« A common error is the off-by-one error,
which is exactly what it sounds like

» Some people think 0-indexing is the
cause of off-by-one errors

* When Julius Caesar was assassinated,
Julian leap years were done wrongly for
50 years due to an off-by-one error.
Humans just suck at counting.

Sequence length

« Get the length of any sequence with len

« We can use ranges to loop over elements
in a different way:

s = "Hello, world!"
for 1 1n range(len(s)):
print(s[1i])

Modifying sequences

* You can access the individual characters in
a string, but you can't change them

x = "Hello, world!"
x[1] = "u" # ERROR!

e strings are immutable (un-changeable)
* SO are ranges

LiSts

CS114 L8 (M4)

LiSts

» Lists are sequences that can contain
anything

» Written with square brackets:
12, 4, 6, 0, 1]

 Indexed like any sequence
x = [2, 4, 6, 0, 1]
X[2] ==

Typing lists

* The type foralistis 1ist

« But most of the time, you care what it's a
list of!

 You can specify what's in the list with, e.g.,
list[int]

* |t is always the right style to type as
specifically as possible. Don't use 1ist
when you know what's in it!

List example

» Let's write a function to average a list of
numbers

def averageOf (l: list[float]) -> float:
sum = 0.0
for val in 1:
sum = sum + val

return sum / len (1)

averageOf ([2, 4, 6, 0, 1]1) # 2.6

List example

* Let's write a function to check if a value is in
a list sequence (any type of sequence!)

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool:
for val in haystack:
1f val == needle:

return True
return False

List example

def contains (
haystack: typing.Sequence,

needle: typing.jhy
) —> bool:

The type for a sequence of any sort (string, list, range)

is in the typing module.
return True

return False

List example

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool: 1
FAawr ~~7r~ 1 anm rrot+ A A1 e

This type means “l don't care”. In this case, we're not
doing anything with the needle, so we don't actually
care what it is.

de W W UWids 44 L Lo e

List example

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool: 1
FAawr ~~7r~ 1 anm rrot+ A A1 e

Be wary of this type!
Remember: types are documentation! Don't just write
“any” to make the type checker shut up!

de W W UWids 44 L Lo e

The in operator

« We just wrote a contains function
* As it turns out, Python has this built in:

x = [2, 4, o6, 0, 1]

6 in x # True
"@" in "hello" # True

Lists are mutable

» Unlike the other sequences we've seen so
far, lists are mutable (changeable)

Xx = [2, 4, o, 0, 1]
print (x) [2, 4, 6, O, 1]
x[1l] = 8 change an element just

variable

%
W
like you’d change a
¥
[2, 8, 6, 0, 1]

print (x)

Using mutation

* Let's replace every value in a list with the

running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:
sum = 0.0
for 1dx in range(len(l)) :
sum = sum + 1[idx]
1[idx] = sum / (idx+1l) # O-indexing!

return sum / len(l)

Using mutation

* Let's replace every value in a list with the

running average (the average until that
point in the list)

Values in the list are replaced (after we used them)

def runningAverage (l:
sum = 0.0

ist[float]) -> float:

for 1dx in range(len(l)) :

+ 1[1dx]

1[idx] = sum / (idx+1l) # O-indexing!
return sum / len(l)

sum = Su

In-lecture quiz (L8)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

* Q1: How many times does this print “x"?
for s in ["Excellent", "text", "box"]:
for ¢ 1in s:

print (c)
A. 0 (no times)

B. 1

C. 2

D. 3

E. 4

In-lecture quiz (L8)
* https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q2: What does this print?

print (len (["Excellent", "text", "box"]))

A. Nothing or an error
B. Excellent text box
C. 3

D. 16

E. 18

Modeling memory

How data is stored

« The association of variable names with
values is part of the memory of the
computer

 Each variable is said to have a slot in
memory that stores a value

« With mutable lists, we'll find that the
arrangement of memory is complicated!

* We need a mental model of how memory
WOrKS

Why it's hard

x = [2, 4, o, 0, 1]
y = X
x[1l] = 8
print (y[1]) # prints 8
for 1 1in v:
i =20
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, o, 0, 1]

= X
Y A change in x was visible in y

XQE;E%
printy[1l]) # prints 8

for 1 1in v:
i =0
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, 6, 0, 1]

y = X

x[1l] = 8

print (y[1]) # prints 8
for 1 1n vy

. " And yet this changed nothing!
l\—ﬂ
print (y[1l]) # prints 8

The graph model of memory

1|1

The graph model of memory

r————ﬂ

Memory slots store values

.
.
.
.
.
.
.
-
I BN B B - e) B B S B
-

-
I u
I
I
I

| 2

The graph model of memory

r————ﬂ

' [>] 1 Numbers (both int and
| I float)and strings are
N 4 values.
| |
(6]
" o]
nl
AP 1 |
L L ——]
/-

The graph model of memory

r————ﬂ

| 9) | List references are values!
X | ! The thing in the memory
N 4 | slotis not the list, it is a
| | reference to the list!
1 |6 :
I
/ ' (Shown as an arrow here. “Pointer”
y : 0 : usually has the same meaning.)
| |
l. . |
ce 1 |
o L ———_1

pud o
pr—

The graph model of memory

r————ﬂ

| 9) | When we index, we copy
< | | the value out of the slot,
| |
| 6 | copies the 1
v /VE 0 i from y[4] to i
| |
Rl
e L ———-1
/-

pud o
e —

The graph model of memory

————1

A for loop is just short-
hand for copying the

values out of the array, so
for 1 1n vy:

does the same. Changing
i doesn't change y[4],
because it was a copy!

\J

r_'___

.‘
.
.
.

The graph model of memory

« We've just added a major complication to
Python: reference types

A reference type is a kind of value that is
stored as a reference, rather than the
content being stored directly in a slot

 Reference types allow spooky action at a
distance

* Let's write a function to square every
value in a list

Reference types

def squarelist(l: list[float]) -> None:
for 1 in range(len(l)) :
1[1] = 1[i]**2

No return??? Then how does this do anything?

Reference types

def squarelist(l: list[float]) -> None:
for 1 in range(len(l)) :
1[1i] = 1[1i]**2
2= (2,4, 6, 0, 1] Let's draw what the

memory in this program

squarelList (a) .
looks like on the board.

Example of mutating a list

e Let's make a function to remove all the 2s
from the factors of a list of numbers

def removeFactorsOfTwo(l: list[int]) —-> None:
for 1idx in range(len(l)):
val = 1[idx]
while val%2 == 0 and val > 1:
val = val // 2
1[1idx] = wval

Example of mutating a list

This function doesn’t return anything,
because it only modifies the list.

def removeFactorsOfTwo (l: list[int]) -2 None:

for 1idx in range(len(l)):
val = 1[idx]
while val%2 ==
val = val // 2
1[1idx] = wval

Example of mutating a list

Why did we loop by indices instead of for
val in 17 The value is copied out of the
grouping, so changing val does nothing!

def removeFactorsOfTwo (1 ist[int]) -> None:

Aside on plurals

The plural of “index” is “indices” because
English was designed by sociopaths.

Again with feeling!

a = [1, 2, 3] a = [1, 2, 3]

for v in a: for 1 in range(len(a)) :
v = v * 2 ali] = afi] * 2

a is still [1, 2, 3] # a is now [2, 4, 6]

Again, let's draw what memory in these
programs looks like on the board

Isn't this confusing?

* Yup!

* ... what, you thought | was going to have a justification here?

Isn't this confusing?

* Yup!

 Usual justification: copying things takes
time, so don’t. A list can be millions of
slots!

- However, using things by reference can
be helpful. Think of runningAverage or
squarelList.

	L8
	Slide 1: Warmup (L8)
	Slide 2: M4: Strings and Lists
	Slide 3: Sequences
	Slide 4: Sequences
	Slide 5: We’ve already seen a sequence!
	Slide 6: Manipulating sequences
	Slide 7: Manipulating sequences
	Slide 8: Manipulating sequences
	Slide 9: Aside on 0-indexing
	Slide 10: Sequence length
	Slide 11: Modifying sequences
	Slide 12: Lists
	Slide 13: Lists
	Slide 14: Typing lists
	Slide 15: List example
	Slide 16: List example
	Slide 17: List example
	Slide 18: List example
	Slide 19: List example
	Slide 20: The in operator
	Slide 21: Lists are mutable
	Slide 22: Using mutation
	Slide 23: Using mutation
	Slide 24: In-lecture quiz (L8)
	Slide 25: In-lecture quiz (L8)
	Slide 26: Modeling memory
	Slide 27: How data is stored
	Slide 28: Why it’s hard
	Slide 29: Why it’s hard
	Slide 30: Why it’s hard
	Slide 31: The graph model of memory
	Slide 32: The graph model of memory
	Slide 33: The graph model of memory
	Slide 34: The graph model of memory
	Slide 35: The graph model of memory
	Slide 36: The graph model of memory
	Slide 37: The graph model of memory
	Slide 38: Reference types
	Slide 39: Reference types
	Slide 40: Example of mutating a list
	Slide 41: Example of mutating a list
	Slide 42: Example of mutating a list
	Slide 43: Aside on plurals
	Slide 44: Again with feeling!
	Slide 45: Isn’t this confusing?
	Slide 46: Isn’t this confusing?

