Warmup (L9)

Add a line of code where specified to make
this print 42, otherthan x[1]1 [1] = 42

x = [[0, O, O], [0, O, O1]
put a line here

x[0][1] = 42

print (x[1][1])

Pedantry corner

* This is a mental model, not a literal
description of what's going on in memory.

* If a type is immutable (think strings),
there's no way for you to tell if what's in
the slot is a reference or a value.

* Values are easier to reason about, so in
our mental model, we think of all
immutable things as values.

A note on equality

» Two lists are equal (== says “True”) if they contain
equal elements, even if they're not the same reference
in memory

» If you want to know if they're the same reference in
memory, there’s another comparison for it, “is”

x = [2, 4, 6, 0, 1]

y = X

z = [2, 4, 6, 0, 1]

x ==y and x == z # True

x is v # True

x is z # False

y[1l] = 8

x == z # False, spooky action at a distance!

A note on equality

» Two lists are equal (== says “True”) if they
contain equal elements, even if they're
not the same reference in memory

* |If you want to know if they're the same
reference in memory, there's another
comparison for it, “is”

* |t's pretty rare to need is, and is can
reveal surprising details about Python’s
real memory model, so usually use ==.

Example break

* Let's find the greatest value in a list

def greatest(lst: list[float]) -> float:
assert len(lst) > 0, "No greatest in
an empty list"
r = 1st[0] # Need to start with
something!
for val in 1lst:
if val > r:
r = val
return r

Expanding lists

Insertion

* As well as changing values in the list, we
can insert slots into the list (and put
values there)

e = [2, 6, 8]
e.lnsert (1, 4)
e.lnsert (0, 0O)

Insertion

Where to insert the value.
Which value to insert.

e = [2, 8]
e.lnsert (1, 4)
e.lnsert (0, 0O)

Insertion

Remember the dot (asin math.sqgrt)? It's
also how you get special functions that act
on lists (and other things we'll see later).

e.fnsert (1, 4)
e.1lnsert (0, 0O)

Insertion

These functions you get with dot (“on” the
list) are called “methods”.

e:[16/8]
e.lnsert (1, 4)
e.1lnsert (0, 0O)

Insertion

Let's add some prints to understand our
lists as the code runs.

e = [2, 6, 8]
e.lnsert (1, 4)
e.1lnsert (0, 0O)

Appending

» There'’s a special version of insert for
the common case of inserting at the end

e = [O, 2, 4, 6/ 8]
e.append (10)

Using append

* Let’s collect all the common divisors of two
integers into a list (sort of “all-cd” instead of

gcd)

def divisors(x: 1nt, y: 1nt) -> list[int]:
r = []
1 =1
while 1 <= x and 1 <= y:
if x%1 == 0 and y%1 ==

r.append (1)
1 =1 + 1
return r

Shrinking lists

* Just like we can add items, we can remove
items by popping them out of the list:

= [0, 2, 4, 6, 8]

.pop (0) # Removes element at index O

e is now [2, 4, 6, 8]

.pop () # By default, removes the last element
e is now [2, 4, 6]

H+= O H= DO O

How does this affect loops?

« Nothing in Python stops you from
changing the length of a list while you
loop through it

« But, the behavior is hugely confusing, so
best avoided

x = [2, 4, 6, 0, 1]
for v in x:
print (v) # Which values will actually print here???

x.pop (0)

Slicing and joining

References are Hell!

« Remembetr, lists are a reference type: if you
pass a list to a function and it modifies it,
you will see the changes!

* This was done because copying is slow
« But sometimes you want to copy!

x = [2, 4, 6, 0, 1]

y = X[] G— But what's this thing???
y[0] = 4

x is still [2, 4, 6, 0, 1]

New syntax!

e x[:] was a slice of x

« Why did we call it a slice when it was a

copy? Because that hamburger operator
is so much more powerful!

New syntax!

* (sequence) [from: to]

« Makes a copy of the sequence, from from
to to

* Like range, from is inclusive, to is
exclusive

« The fromand to are the indices, not
values!

Basic slices
» Let's split a list in half using slicing

midpoint = len(lst) // 2
left = 1st[0O:midpoint]
right = lst[midpoint:len(lst)]

More advanced slicing

 Where did [:] come from?
« Both from and to are optional!

« By default, from =0
« By default, to = 1len (the sequence)

« With both defaults, you copy the whole list

« There's a third part, also optional: the step
(just like range)

« 1st[::2] gets every second element

e Ist[::-1] reverses a sequence

More advanced indexing

e [t's common to want the last elementin a
ist (or other sequence)

* Obvious way: 1st[len(lst)-1]

» Python lets you shorthand by using a
negative index: 1st [-1]

« Same works with slicing, and insert, and
pop, and everything else!

In-lecture quiz (L9)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

* Q1: What does this code print?
nums = [0, 1, 2, 3, 4, 5]
print (nums[—-4:-1])

A. [2, 3, 4]
B. [3, 4, 5]
C. [2, 3,4, 5]
D. [1, 2, 3]

In-lecture quiz (L9)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q2: What does this (awful) code print?
nums = [0, 1, 2, 3, 4, 5]
print (nums[-4:-1][::2][1])

A. Nothing or an error
B. 2
C. 3
D. 4

Joining

 You can also join (called concatenate) lists
or other sequences with +

"Hello, " + "world!" == "Hello, world!"
[3/ 1/ 4] + [1/ 5/ 9] == [3/ 1/ 4/ 1/ 5/ 9]

The reverse interleave

e Let's write a function to reverse interleave
a list

« What this means is, for instance, turn
(1, 2, 3, 4, 5, 6]into
[1/ 3/ 5/ 2/ 4, 6]

 Perfectly interleaving or reverse interleaving
playing cards is a basic magicians’ trick

The reverse interleave

def reverselInterleave (deck: 1list) —-> 1list:
return deck[::2] + deck[1l::2]

* (Yup, that's it! Slicing is powerful, eh?)

Sequence conversions

 You can convert any other sequence into
a list by using 1ist as a function:

list ("Hello!") ==
["H"’ HeH’ HlH’ "l"’ "o"’ "!"]

The second dimension

The second dimension

 To represent anything two-dimensional,
it's common to use lists within lists
(nested lists)

* E.g., a tic-tac-toe board might look like
this:
board — [:" "’ "x", 1A ": ,
:" "’"x"’"O": ,

A " " " " LA
4 ’/

The second dimension

* Think carefully about memory! Let's draw
our tic-tac-toe board on the blackboard.

* |t's easy to make surprising mistakes
board[2] = board[1l]
board[Z2] [1] = "o"

Now board[l][1l] is also "o"!

Tuples

CS114 L9 (M4)

Tuples are immutable lists

« One more sequence type: tuples
 Tuples are just immutable lists

 Created with parentheses:
x = (2, 4, o6, 0, 1)

Why tuples?

« Why would we want immutable lists when
we already have lists?

« Usually to box together multiple values of
disparate types that are related in
meaning

* The type for a list can only have one “what’s
in the list” type, because it's expandable

« The type for a tuple can list every type in it,
because it's fixed

Typing tuples

x: tuplel[int, str] = (24601, "Jean val Jean")

You can name each individual type in a tuple, but for a
list, they all have to be the same!

Returning tuples

« Most common use is returning multiple
things from a function

« We'll do this with an example in a
moment

Fun with lists

CS114 L9 (M4)

Longest string

 Find the longest string in a list

* Instead of returning a string, return a list
of all strings of the same length, and the
length

Longest string

def longest(strs: list[str]) -> list[str]:
r = [strs[0]]
for s of strs[l:]:
if len(s) > len(r[0]):
r = [3]
elif len(s) == len(r[0]):
r.append(s)
return (r, len(r[0]))

[...]
(res, length) = _Jongest(["a", "blue", "duck"])

You can assign to a tuple of variables to get the values
out of a tuple. We could've also used indexing.

Another version of pi

« One way to calculate pi is the dartboard
technique: throw darts at a square board with a
quarter circle in it, and the proportion that land in
the circle can tell us pi

« We'll need one new feature to do this: random
numbers:

import random
random.random() # A random number
between 0.0 and

1.0
(inclusive, exclusive)

Monte Carlo pi

import random

def monteCarloPi (rounds: int) -> float:
xXs = []
ys = []
for in range (rounds) :

xs.append (random. random ())
ys.append (random.random ())

How many fall in the quarter circle?

inside = 0
for i1idx in range (rounds) :
X = xs|[1dx]
y = ys[1dx]
if x*x + y*y <= 1:
inside = inside + 1

return 4 * inside / rounds

Module summary

Module summary

» Strings and ranges are sequences
« for loops loop over sequences

» Lists are mutable sequences

« Lists are reference types
 Memory model

« Expanding/contracting lists

» Slicing and joining lists

 Tuples are immutable lists

	L9
	Slide 1: Warmup (L9)
	Slide 2: Pedantry corner
	Slide 3: A note on equality
	Slide 4: A note on equality
	Slide 5: Example break
	Slide 6: Expanding lists
	Slide 7: Insertion
	Slide 8: Insertion
	Slide 9: Insertion
	Slide 10: Insertion
	Slide 11: Insertion
	Slide 12: Appending
	Slide 13: Using append
	Slide 14: Shrinking lists
	Slide 15: How does this affect loops?
	Slide 16: Slicing and joining
	Slide 17: References are Hell!
	Slide 18: New syntax!
	Slide 19: New syntax!
	Slide 20: Basic slices
	Slide 21: More advanced slicing
	Slide 22: More advanced indexing
	Slide 23: In-lecture quiz (L9)
	Slide 24: In-lecture quiz (L9)
	Slide 25: Joining
	Slide 26: The reverse interleave
	Slide 27: The reverse interleave
	Slide 28: Sequence conversions
	Slide 29: The second dimension
	Slide 30: The second dimension
	Slide 31: The second dimension
	Slide 32: Tuples
	Slide 33: Tuples are immutable lists
	Slide 34: Why tuples?
	Slide 35: Typing tuples
	Slide 36: Returning tuples
	Slide 37: Fun with lists
	Slide 38: Longest string
	Slide 39: Longest string
	Slide 40: Another version of pi
	Slide 41: Monte Carlo pi
	Slide 42: Module summary
	Slide 43: Module summary

