
Warmup (L11)

• Write a function sortByWordCount to
sort a list of strings in place by number of
words (not string length).

• Hint: str.split() splits a string into a list
of strings using whitespace.

Dictionaries
CS114 L10 (M5)

The trouble with tuples
• Here’s some info on me

info = (
"Richards",
"Gregor",
1.76,
"University of Waterloo",
"Purdue University",
2014,
11

)

• … but, what means what?

Name your variables!

• Good variable naming is important to
understandable code

• Tuples essentially prevent that: the values
within the tuple just have indices

• If only we could group values together
but still name them all!

The dictionary

• Dictionaries store various values (like
tuples) but associate each value with a
“key”

• The key can be anything, but let’s start
with a string to demonstrate

Basic dictionary
info = {

"surname": "Richards",

"given name": "Gregor",

"height": 1.76,

"employer": "University of Waterloo",

"alma mater": "Purdue University",

"graduation year": 2014,

"employment years": 11

}

print(

info["given name"], info["surname"],

"works at", info["employer"]

)

New syntax!

• Dictionaries are written in curly braces: {
and }

• Dictionaries contain key-value pairs: if you
use this key, you will find this value

• Key-value pair written with a colon
key: value e.g. "surname": "Richards"

• The key is any Python value (confusingly), so
strings can be used as names as done here

Dictionaries are mutable

• Dictionaries are mutable reference types

• Value can be changed by setting it

info["employment years"] = 12

print(info["employment years"]) # Now 12

Dictionary powers
CS114 L10 (M5)

Expanding and contracting

• Dictionaries can be expanded by setting
new keys

print(info["citizenship"]) # ERROR!

info["citizenship"] = ["USA"]

print(info["surname"]) # Still there

print(info["citizenship"]) # Now also there

Expanding and contracting

• With dictionaries, “in” is key presence

if "age" in info:

print("This person is", info["age"], "years old")

Expanding and contracting

• Remove a key (and its value) with .pop

info.pop("employer") # Fired for tormenting

Science students

print(info["employer"]) # ERROR!

Typing dictionaries

• The type for a dictionary is dict

• If you know the key and value types, and
they’re consistent, dict[key, value]

• You can use typing.Any for either key or
value if one is consistent but the other
isn’t

• This will become clearer when we write
some code, so…

Distribution

• Let’s write a function to count the number
of instances of each value in a sequence

• e.g. in [8, 6, 7, 5, 3, 0, 9, 2, 4, 6, 0, 1], we want
8 associated with 1, 6 associated with 2, etc.

Distribution

import typing

def distribution(
lst: typing.Sequence

) -> dict[typing.Any, int]:
r = {}
for val in lst:

if not (val in r):
r[val] = 0

r[val] = r[val] + 1
return r

print(distribution([
8, 6, 7, 5, 3, 0, 9, 2, 4, 6, 0, 1

]))

Before incrementing
the value in the

dictionary, we need
to make sure there’s

something there

Almost a chart

• Building on distribution, let’s make a
simple distribution chart by printing as
many *s as there are instances of each
value

• We need one trick first:
"*" * 3 == "***"

Almost a chart (first try)
def distributionChart(

 lst: typing.Sequence

) -> None:

 dist = distribution(lst)

 for key in dist:

 print(key, "*" * dist[key])

• for with a dictionary loops over keys

• This version is a bit unsatisfying, because
it’s printed in whatever order they first
appeared in the sequence

Ordered chart

• To loop in order, we’re going to have to
sort the keys

• To do that, we need to get the keys as a
sequence (we can sort any sequence)

• But we could for over it: the keys were
already a sequence!

• In short: when you treat a dictionary as a
sequence, it’s a sequence of keys.

Ordered chart

def distributionChart(

 lst: typing.Sequence

) -> None:

 dist = distribution(lst)

 for key in sorted(dist):

 print(key, "*" * dist[key])

• Bonus: This isn’t specific to lists! Works with
any sequence, even strings!

Careful with floats!

• Remember that floats lie

annoying = {}

annoying[0.3-0.2] = "Hello"

annoying[0.1] = "world"

print(annoying)

In-lecture quiz (L11)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: What will this print?
def first(s: str) -> str:
 return s[0]
print(sorted(
 ["an", "aardvark", "ate", "ants"],
 key=first
))

A. Nothing or an error

B. ['an', 'aardvark', 'ate', 'ants']

C. ['aardvark', 'an', 'ants', 'ate']

D. ['an', 'ate', 'ants', 'aardvark']

E. aardvark an ants ate

Conversions
CS114 L11 (M5)

Converting to a dictionary
• Technically, dict can be used to convert a

sequence to a dictionary…

• but, it wants a sequence of key-value
pairs, with each pair as a tuple:
x = dict([(0, 0), (1, 1), (2, 4), (3, 9)])

• That’s a pretty unlikely type to find unless
you specifically intended to make a
dictionary with it (and if you did, why
didn’t you just put it in a dictionary in the
first place?)

Converting to a dictionary

• More generally, it usually doesn’t make
sense to convert to a dictionary. Here’s how
you might:

def toDictionary(
 seq: typing.Sequence
) -> dict:
 r = {}
 for idx in range(len(seq)):
 r[idx] = seq[idx]
 return r

Fun with dictionaries
CS114 L10 (M5)

Memoization

• Memoization is remembering the result of
a computation so that if the same
computation is requested again, we can
reuse the previous result

• Dictionaries are great for memoization!

• Let’s memoize our divisors function

Memoized divisors

• Original for reference

def divisors(x: int, y: int) -> list[int]:

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 return r

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Python will usually guess the type if you don’t tell it,
but it doesn’t like mystery dictionaries, so we had to

put a type annotation here.

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Yes, even tuples can be the key!
(Fits really well here, since we have two arguments)

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

memo changes every time we call this, so the next
time, we’ll see the changes made from the last time

Memoized divisors

• Big red flag on that example: lists are
mutable!

lst = divisors(2, 4)

lst.append("a bag full of squirrels")

print(divisors(2, 4)) # [1, 2,

 # "a bag full of

 # squirrels"]

Memoized divisors (fixed)
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)][:]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r[:]

Real histogram

• We made a distribution function, but real
histograms divide things into bins

• Let’s make a binning histogram

• Stage one: make bins

• Given a minimum and maximum value,
divide that range into a given number of
bins

• (Note: We’re going to do this in a more complex way than is
needed to demonstrate lists and sorting and dictionaries.)

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

What a complicated type! Well, a bin is a range (a
minimum and maximum for that bin), so it’s two

numbers. Thus, our set of bins will be a list of those
pairs.

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

We know how many bins we want, but there’s nothing
else to loop over, so we simply loop over the bin

number (0, 1, …, binCt-1).

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

Each bin is a tuple (mind your parentheses!)

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

What’s this math? We split the range into binCt many
bins (span/binCt), and this is bin #binNum

(*binNum). But, that just split up the span, i.e., max-
min. To get it back into range, we need to add on min.

Real histogram: bins

• There is a problem with the bins we just
made: what part of the range is inclusive
vs. exclusive?

• If we say it’s lower-bound-inclusive,
upper-bound-exclusive, then the max
value won’t actually go into any bin…

• We’ll take that approach, and just fix the
max value later.

Real histogram: find my bin

• Step two: Which bin does this value
belong to?

• Given a list of bins and a value, choose
the appropriate bin

• To solve the exclusivity problem, we’ll also
look for values that don’t seem to be in
any bin

Real histogram: find my bin
def findBin(

 val: float,

 bins: list[tuple[float, float]]

) -> tuple[float, float]:

 # Fix the exclusivity problem

 if val <= bins[0][0]: # min

 return bins[0]

 if val >= bins[-1][1]: # max

 return bins[-1]

 # Look for a matching bin

 for bin in bins:

 if val >= bin[0] and val < bin[1]:

 return bin

 # Some default if the above somehow fails

 return bins[-1]

Real histogram: find my bin
def findBin(

 val: float,

 bins: list[tuple[float, float]]

) -> tuple[float, float]:

 # Fix the exclusivity problem

 if val <= bins[0][0]: # min

 return bins[0]

 if val >= bins[-1][1]: # max

 return bins[1]

 # Look for a matching bin

 for bin in bins:

 if val >= bin[0] and val < bin[1]:

 return bin

 # Some default if the above somehow fails

 return bin[-1]

Our squishy human brains can deduce that this
return is unnecessary (we can never get here), but

Python doesn’t know that, so we put a default return
to make the type checker happy.

Real histogram: make the histogram

• Finally, let’s put it together and make a
histogram for a list!

Real histogram
def histogram(
 values: list[float],
 binCt: int
) -> dict[tuple[float, float], int]:
 s = sorted(values)
 vBins = bins(s[0], s[-1], binCt)
 r = {}
 # Each bin starts empty
 for bin in vBins:
 r[bin] = 0
 # Add the values
 for val in values:
 bin = findBin(val, vBins)
 r[bin] = r[bin] + 1
 return r

Real histogram

def histogramChart(

 lst: list[float], binCt: int

) -> None:

 hist = histogram(lst, binCt)

 for key in sorted(hist):

 print(key, "*" * hist[key])

Invert dictionary

• Let’s invert a dictionary (swap keys for
values)

Invert dictionary

def invertDictionary(inDict: dict) -> dict:

 outDict = {}

 for key in inDict:

 outDict[inDict[key]] = key

 return outDict

Invert dictionary

• That inversion is imperfect, because of
how keys work: multiple keys can have
the same value

• Let’s make a version that inverts into a list
(the list of all keys that had the same
value)

Invert dictionary

def invertDictionaryList(

 inDict: dict

) -> dict[typing.Any, list]:

 outDict = {}

 for key in inDict:

 val = inDict[key]

 if not (val in outDict):

 outDict[val] = []

 outDict[val].append(key)

 return outDict

Module summary
CS114 L10 (M5)

Module summary

• Sort with .sort or sorted

• Sort can reverse

• Sort can take a “key”

• Dictionaries associate keys (different kind
of keys) with values

• Dictionaries are mutable

• Looping over dictionaries

	L11
	Slide 1: Warmup (L11)
	Slide 2: Dictionaries
	Slide 3: The trouble with tuples
	Slide 4: Name your variables!
	Slide 5: The dictionary
	Slide 6: Basic dictionary
	Slide 7: New syntax!
	Slide 8: Dictionaries are mutable
	Slide 9: Dictionary powers
	Slide 10: Expanding and contracting
	Slide 11: Expanding and contracting
	Slide 12: Expanding and contracting
	Slide 13: Typing dictionaries
	Slide 14: Distribution
	Slide 15: Distribution
	Slide 16: Almost a chart
	Slide 17: Almost a chart (first try)
	Slide 18: Ordered chart
	Slide 19: Ordered chart
	Slide 20: Careful with floats!
	Slide 21: In-lecture quiz (L11)
	Slide 22: Conversions
	Slide 23: Converting to a dictionary
	Slide 24: Converting to a dictionary
	Slide 25: Fun with dictionaries
	Slide 26: Memoization
	Slide 27: Memoized divisors
	Slide 28: Memoized divisors
	Slide 29: Memoized divisors
	Slide 30: Memoized divisors
	Slide 31: Memoized divisors
	Slide 32: Memoized divisors
	Slide 33: Memoized divisors (fixed)
	Slide 34: Real histogram
	Slide 35: Real histogram: bins
	Slide 36: Real histogram: bins
	Slide 37: Real histogram: bins
	Slide 38: Real histogram: bins
	Slide 39: Real histogram: bins
	Slide 40: Real histogram: bins
	Slide 41: Real histogram: find my bin
	Slide 42: Real histogram: find my bin
	Slide 43: Real histogram: find my bin
	Slide 44: Real histogram: make the histogram
	Slide 45: Real histogram
	Slide 46: Real histogram
	Slide 47: Invert dictionary
	Slide 48: Invert dictionary
	Slide 49: Invert dictionary
	Slide 50: Invert dictionary
	Slide 51: Module summary
	Slide 52: Module summary

