Warmup (L11)

« Write a function sortByWordCount to

sort a list of strings in place by number of
words (not string length).

* Hint: str.split () splits a string into a list
of strings using whitespace.

Dictionaries

CS114 L10 (M5)

The trouble with tuples

e Here's some info on me

info = (
"Richards",
"Gregor",
1.76,
"University of Waterloo",

"Purdue University",
2014,
11

)

e ... but, what means what?

Name your variables!

» Good variable naming is important to
understandable code

 Tuples essentially prevent that: the values
within the tuple just have indices

* |f only we could group values together
but still name them all!

The dictionary

« Dictionaries store various values (like
tuples) but associate each value with a
llkeyll

» The key can be anything, but let’s start
with a string to demonstrate

Basic dictionary

info = {
"surname'": "Richards'",
"given name'": "Gregor',
"height": 1.760,
"employer": "University of Waterloo",
"alma mater": "Purdue University'",

"graduation year": 2014,
"employment years'": 11
}

print (
info["given name"], 1nfo["surname"],
"works at'", info["employer"]

New syntax!

 Dictionaries are written in curly braces: {
and }

 Dictionaries contain key-value pairs: if you
use this key, you will find this value

 Key-value pair written with a colon
key: valuee.g. "surname'": "Richards"

* The key is any Python value (confusingly), so
strings can be used as names as done here

Dictionaries are mutable

» Dictionaries are mutable reference types
 Value can be changed by setting it

info["employment years"] = 12
print (info["employment years"]) # Now 12

Dictionary powers

Expanding and contracting

» Dictionaries can be expanded by setting
new keys

print (info["citizenship"]) # ERROR!
info["citizenship"] = ["USA"]
print (info["surname"]) # Still there

print (info["citizenship"]) # Now also there

Expanding and contracting

« With dictionaries, “in" is key presence

if "age" in info:
print ("This person is", info["age"], '"years old")

Expanding and contracting

« Remove a key (and its value) with .pop

info.pop ("employer") # Fired for tormenting
Science students
print (info["employer"]) # ERROR!

Typing dictionaries

» The type for a dictionary is dict

* It you know the key and value types, and
they're consistent, dict [key, value]

* YOou can use typing.Any for either key or
value if one is consistent but the other
Isn't

e This will become clearer when we write
some code, so...

Distribution

» Let's write a function to count the number
of instances of each value in a sequence

ceg.in[8,6,7,5,3,0,9, 2,4,6,0, 1], we want
8 associated with 1, 6 associated with 2, etc.

Distribution

import typing : :
Before mcrementlng
def distribution

1st: typing.Sequence the value in the

) > dict[typing.Any,y dictionary, we need

r = {) ,
for val in lst- to make sure there’s

if not (val in r): something there
rival] = 0
rival] = r[val] + 1
return r

print (distribution ([
8, o, 7, 5, 3, 0, 9, 2, 4, o, 0, 1
1))

Almost a chart

 Building on distribution, let's make a
simple distribution chart by printing as
many *s as there are instances of each
value

e We need one trick first:
Wkl % 3 —— dedki

Almost a chart (first try)

def distributionChart (
lst: typlng.Sequence
) —> None:
dist = distribution(lst)
for key 1in dist:
print (key, "*" * distlkey])

« for with a dictionary loops over keys

 This version is a bit unsatisfying, because
it's printed in whatever order they first
appeared in the sequence

Ordered chart

 To loop in order, we're going to have to
sort the keys

 To do that, we need to get the keys as a
sequence (we can sort any sequence)

« But we could for over it: the keys were
already a sequence!

* In short: when you treat a dictionary as a
sequence, it's a sequence of keys.

Ordered chart

def distributionChart (
lst: typlng.Sequence
) —> None:
dist = distribution(lst)
for key i1n sorted(dist):
print (key, "*" * distlkey])

« Bonus: This isn't specific to lists! Works with
any sequence, even strings!

Careful with floats!

e Remember that floats lie

annoying = {}
annoying[0.3-0.2] = "Hello"
annoying[0.1] = "world"

print (annoying)

In-lecture quiz (L11)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/
* Q1: What will this print?
def first(s: str) -> str:
return s[0]

print (sorted (
["an", "aardwvark", "ate", "ants"],

key=first
))
A. Nothing or an error
B. ['an', 'aardvark', 'ate', 'ants']
C. ['aardvark', 'an', 'ants', 'ate']
D. ['an', 'ate', 'ants', 'aardvark']
E. aardvark an ants ate

Conversions

CS114 L11 (M5)

Converting to a dictionary

 Technically, dict can be used to convert a
sequence to a dictionary...

* but, it wants a sequence of key-value
pairs, with each pair as a tuple:
x = dict([(O, O), (1, 1), (2, 4), (3, 9)1)

 That's a pretty unlikely type to find unless
you specifically intended to make a
dictionary with it (and if you did, why
didn't you just putitin a dictionary in the
first place?)

Converting to a dictionary

« More generally, it usually doesn't make
sense to convert to a dictionary. Here's how
you might:

def toDictionary (
seq: typling.Sequence
) —=> dict:
r = {}
for 1dx in range(len(seq)):
rliidx] = seqg[idx]
return r

Fun with dictionaries

Memoization

« Memoization is remembering the result of
a computation so that if the same
computation is requested again, we can
reuse the previous result

» Dictionaries are great for memoization!
 Let's memoize our divisors function

Memoized divisors

 Original for reference

def divisors(x: int, y: 1nt) -> list[int]:
r = []
1 =1
while 1 <= x and 1 <= y:
if x%1 == 0 and y%1 ==

r.append (1)
i =1+ 1
return r

Memoized divisors

memo: dict[tuple[int, int], int] = {}

def divisors(x: 1nt, y: 1nt) -> list[int]:
if (x, y) 1n memo:
return memo| (x, V)]

r = []
i =1
while 1 <= x and 1 <= y:

if x%1 == 0 and y%1 ==
r.append (1)
1 =1+ 1
memo|[(x, y)] = ¢
return r

Memoized divisors

memo: dict[tuple[int, int], int] = {}

Aaf (“.I'IYT'IQF\Vm 1int)Y —> Jicetlaint]-

Python will usually guess the type if you don't tell it,
but it doesn't like mystery dictionaries, so we had to
put a type annotation here.

1l = 1
while 1 <= x and 1 <= y:
if x%1 == 0 and y%1 ==

r.append (1)
1 =1 + 1
memo[(X, y)] = r
return r

Memoized divisors

memo: dict[tuple[int, int], int] = {}

def divisors(x: 1nt, y: 1nt) -> list[int]:
if (x, y) 1n memo:

retur emo [(x, V)]
r = []

Yes, even tuples can be the key!
(Fits really well here, since we have two arguments)
r.append (1)
i=1+1
memo[(X, y)] = r
return r

Memoized divisors

memo: dict[tuple[int, int], int] = {}

def divisors(x: 1nt, y: 1nt) -> list[int]:
if (x, y) 1n memo:
return memo| (x, V)]

r = []

memo changes every time we call this, so the next
time, we'll see the changes made from the last time

r.append (1)
1 =1 +

memo [(x, y)] = r
return r

Memoized divisors

* Big red flag on that example: lists are
mutable!

lst = divisors (2, 4)
lst.append("a bag full of squirrels")
print (divisors (2, 4)) # [1, 2,
"a bag full of
W squirrels"]

Memoized divisors (fixed)

memo: dict[tuple[int, int], int] = {}

def divisors(x: 1nt, y: 1nt) -> list[int]:
if (x, y) 1n memo:
return memo|[(x, v)][:]

r = []
1 =1
while 1 <= x and 1 <= y:
if x%1 == 0 and y%1 ==
r.append (1)
1 =1+ 1
memo|[(x, y)] = ¢

return r|:]

Real histogram

« We made a distribution function, but real
histograms divide things into bins

* Let's make a binning histogram
 Stage one: make bins

e Given a minimum and maximum value,
divide that range into a given number of
bins

« (Note: We're going to do this in a more complex way than is
needed to demonstrate lists and sorting and dictionaries.)

Real histogram: bins

def bins(
min: float, max: float,
binCt: int

) —> list[tuple[float, float]]:
bins = []
span = max - min

for binNum in range (binCt) :
bins.append ((
span/binCt*binNum + min,
span/binCt* (binNum+1l) + min
))

return bins

Real histogram: bins

def bins(
min: float, max: float,
binCt: int

) —> list[tuple[float, float]]:

bins = []
span = max - ml

What a compiicated type! Well, abinis a range (a
minimum and maximum for that bin), so it's two
numbers. Thus, our set of bins will be a list of those

pairs.
return pLins

Real histogram: bins

We know how many bins we want, but there's nothing

else to loop over, so we simply loop over the bin
number (0, 1, ..., binCt-1).

bins = []
span = max Yd
for binNum in range (binCt) :
bins.append ((
span/binCt*binNum + min,
span/binCt* (binNum+1l) + min
))

return bins

Real histogram: bins

Each bln IS a tuple (mind your parentheses!)

L rLvau Ty LCL AN o Lrouvaua ey

blnCt. int
) —> list[tuple[floaly, float]]:
bins = []
span = max - min
for binNum in ragge (binCt) :
bins.append ((
span/binCt*binNum + min,
span/binCt* (binNum+1) + min
))

return bins

Real histogram: bins

What's this math? We split the range into binCt many
bins (span/binCt), and this is bin #binNum
(*binNum). But, that just split up the span, i.e., max-
min. TO get it back into range, we need to add on min.

span = max - min
for binNum in rande (binCt) :
bins.append ((
span/binCt*binNum + min,
span/binCt* (binNum+1l) + min
))

return bins

Real histogram: bins

* There is a problem with the bins we just
made: what part of the range is inclusive
vs. exclusive?

* |[f we say it's lower-bound-inclusive,
upper-bound-exclusive, then the max
value won't actually go into any bin...

« We'll take that approach, and just fix the
max value later.

Real histogram: find my bin

* Step two: Which bin does this value
belong to?

* Given a list of bins and a value, choose
the appropriate bin

* To solve the exclusivity problem, we'll also
look for values that don't seem to be in
any bin

Real histogram: find my bin

def findBin (
val: float,
bins: list[tuple[float, float]]
) —-> tuple[float, float]:
Fix the exclusivity problem
if val <= bins[0][0]: # min
return bins|[0]
if val >= bins[-1][1l]: # max
return bins|[-1]
Look for a matching bin
for bin in bins:
if val >= bin[0] and wval < bin[l]:
return bin
Some default if the above somehow fails
return bins[-1]

Real histogram: find my bin

def findBin (

val: float,

bins: list[tuple[float, float]]
) —-> tuple[float, float]:

Fix the exclusivity problem
af 7121 c— HNinelNTITNTlTe # wman

Our squishy human brains can deduce that this
return is unnecessary (we can never get here), but
Python doesn’'t know that, so we put a default return
to make the type checker happy.

AV - R - AN/ L 11 Ll \Y ~ J\J_I_J.J.L_I_J 0

return bi
Some default if the above somehow fails
return bin[-1]

Real histogram: make the histogram

* Finally, let's put it together and make a
histogram for a list!

Real histogram

def histogram(
values: list[float],
binCt: int
) —> dict[tuple[float, float], 1int]:
s = sorted(values)
vBins = bins(s[0], s[-1], binCt)
r = {}
Each bin starts empty
for bin in vBins:
ribin] = 0
Add the wvalues
for val in values:
bin = findBin(val, vBins)
r(bin] = r[bin] + 1
return r

Real histogram

def histogramChart (
lst: list[float], binCt: 1int
) —> None:
hist = histogram(lst, binCt)
for key in sorted(hist):
print (key, "*" * histlkevy])

Invert dictionary

* Let's invert a dictionary (swap keys for
values)

Invert dictionary

def invertDictionary(inDict: dict) -> dict:
outDict = {}
for key in inDict:
outDict[inDict[key]] = key
return outDict

Invert dictionary

« That inversion is imperfect, because of
how keys work: multiple keys can have
the same value

e Let's make a version that inverts into a list
(the list of all keys that had the same
value)

Invert dictionary

def invertDictionarylList (
inDict: dict
) —> dict[typing.Any, list]:
outDict = {}
for key in inDict:
val = 1nDict[key]
if not (val in outDict) :
outDict[val] = []
outDict[val] .append (key)
return outDict

Module summary

Module summary

e Sort with .sort or sorted
e Sort can reverse
 Sort can take a "key”

» Dictionaries associate keys (different kind
of keys) with values

e Dictionaries are mutable
» Looping over dictionaries

	L11
	Slide 1: Warmup (L11)
	Slide 2: Dictionaries
	Slide 3: The trouble with tuples
	Slide 4: Name your variables!
	Slide 5: The dictionary
	Slide 6: Basic dictionary
	Slide 7: New syntax!
	Slide 8: Dictionaries are mutable
	Slide 9: Dictionary powers
	Slide 10: Expanding and contracting
	Slide 11: Expanding and contracting
	Slide 12: Expanding and contracting
	Slide 13: Typing dictionaries
	Slide 14: Distribution
	Slide 15: Distribution
	Slide 16: Almost a chart
	Slide 17: Almost a chart (first try)
	Slide 18: Ordered chart
	Slide 19: Ordered chart
	Slide 20: Careful with floats!
	Slide 21: In-lecture quiz (L11)
	Slide 22: Conversions
	Slide 23: Converting to a dictionary
	Slide 24: Converting to a dictionary
	Slide 25: Fun with dictionaries
	Slide 26: Memoization
	Slide 27: Memoized divisors
	Slide 28: Memoized divisors
	Slide 29: Memoized divisors
	Slide 30: Memoized divisors
	Slide 31: Memoized divisors
	Slide 32: Memoized divisors
	Slide 33: Memoized divisors (fixed)
	Slide 34: Real histogram
	Slide 35: Real histogram: bins
	Slide 36: Real histogram: bins
	Slide 37: Real histogram: bins
	Slide 38: Real histogram: bins
	Slide 39: Real histogram: bins
	Slide 40: Real histogram: bins
	Slide 41: Real histogram: find my bin
	Slide 42: Real histogram: find my bin
	Slide 43: Real histogram: find my bin
	Slide 44: Real histogram: make the histogram
	Slide 45: Real histogram
	Slide 46: Real histogram
	Slide 47: Invert dictionary
	Slide 48: Invert dictionary
	Slide 49: Invert dictionary
	Slide 50: Invert dictionary
	Slide 51: Module summary
	Slide 52: Module summary

