Warmup (L12)

* You haveadict([str, float]

 Sort the keys of the dictionary in
decreasing order, sorting by the values
the keys are associated with in the
dictionary

x = {"A": 42, "B": -3, "C": math.pi}
We want ["A", "C"’ "B"]

Files

M6

Reading files

Data

« We've seen lots of types of data

 But, so far, everything we've seen was in
the Python code

» Usually we want to deal with data created
elsewhere

 E.g., you get the results of an experiment,
and then, later, want to do some
computation on that

Files

* Files contain data
* Generally permanent (until deleted)

« Can be written and read by different
programs

 Allow exchange of data between
programs

« Have names, so the filesystem is like a
string—data dictionary

Files

 There are lots of kinds of data, and so lots
of kinds of files

e .tXt, .py, .ipynb, .csv, .json, .png, .webp,
webm, .mp4, .pptx, ...

* The filename extension is just a hint though.
Nothing stops you from using a misleading
extension.

 We've seen a few of these in this course

Files

* You need to know how the data is
organized in your file to make use of it

« Often need bespoke code for each kind of
data

« We'll focus on text files for now

Getting a file onto Jupyter

* Y'know the “!wget” command you've
been using to get starter code?

« That's a tool to get a file from the web
(web-get), and it puts the file in your
Jupyter directory

« We'll use it to get other files
* You can also upload your own files 4

Step one: fetch a file
* Let's get a big text file to play with

'wget https://student.cs.uwaterloo.ca/~cslld/src/a-tale-of-two-cities.txt

Step two: opening a file

 (Note: We're going to see a better way to
do this in a moment)

cities = open("a-tale-of-two-cities.txt")
for line in cities:

print (line)
clties.close ()

Text files

» Text files are just very long strings

 Often useful to view the text one line at a
time

* S0, when you loop over the file, you get
one line at a time

« But... it's printing weird...

Text files

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it

was the epoch of incredulity, it was the season of Light, it was the

« What's with the extra line breaks? Why is
it double-spaced?

« When we loop through a text file, the
strings we get include the line break

* print always put a line break anyway, so
we end up with two!

Text files

e String methods to the rescue:
str.strip () will strip all the whitespace

from the beginning and end of the string

cities = open("a-tale-of-two-cities.txt")
for line 1in cities:

print (line.strip())
cities.close ()

File handles and cleanup

open
* open returns a file handle
* It lets you get a handle on the file data

e A file handle is an iterable

* [terables are like sequences, but you can't
use len on them

« Python doesn’t know how long the file is
until it's finished reading it

« More precisely, sequences are sized
iterables

New type: iterable

* typing.Iterable

* typing.Iterable[str] for, e.g., an
iterable of strings

 (We've seen enough types now that
hopefully this is enough!)

Python cleanup

cities = open("a-tale-of-two-cities.txt")
for line in cities:

print (line.strip())
clties.close ()

« We've never had to do anything like
cities.close () before. Why now?

Python cleanup

« Python cleans up after itself, but files are
outside of Python

 You must close the file when you're done

« What if your code crashes, or you have
complicated code paths?

» Cleanup is surprisingly error prone, so
Python provides a built-in way to close a
file after a block of code has used it

Step two: opening a file

* (Now the right way!)

with open("a-tale-of-two-cities.txt") as cities:
for line in cities:
print (line.strip())

New syntax!

* with (anything) as (variable name):
* A built-in way to do cleanup automatically

 Equivalent to assigning to a variable, but
has a block of code like 1f or while

* When the block is done, automatically
cleans up (in this case, closes the file)

« Even cleans up if the code crashes, early
returns, etc.

Step three: using the data

e Let's do a distribution chart of word use
in A Tale of Two Cities

e First let's remember our distribution chart
functions from earlier...

import typilng

def distribution (
lst: typing.Sequence
) —> dict[typing.Any, 1int]:
r = {}
for val in 1st:
if not (val in r):
r{val] = 0
rival] = r[val] + 1
return r

def distributionChart (
lst: typing.Sequence
) —> None:
dist = distribution(lst)
for key in sorted(dist):
print (key, "*" * distl[key])

Step three: using the data

* For this, we'll need two more features:

e str.split():S5p
(we've seen this)

it a string by whitespace

* str.lower (): Getthe lower-case version of
a string (capitals will confuse our

distribution)

Step three: using the data

def distributionChart (
lst: typing.Sequence
) —> None:
dist = distribution (lst)
def distCount (key) :
return dist[key]
for key in sorted(dist, key=distCount, reverse=True) :
print (key, "*¥" * distlkey])

words = []
with open("a-tale-of-two-cities.txt") as cities:
for line in cities:
words = words + line.strip().lower () .split ()
distributionChart (words)

That... kinda worked

« Common words were common, but by
just splitting on whitespace, we
considered “but,” to be a word (etc.)

« We could keep adding exceptions to our
rules until it solves the problem, but
wouldn't it be simpler if our data was in a
more consistent format in the first place?

« Seems like our problem was that text files
are messy. Let's look at other formats for
data.

In-lecture quiz (L12)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/
« Q1: Whatis len (x) after this code runs?

with open("a-tale-of-two-cities.txt") as rdr:
X = list (rdr)

10 (the number of words in the last line)

59 (the number of characters in the last line)
16,282 (the number of lines in the file)
776,877 (the number of characters in the file)

oNw >

In-lecture quiz (L12)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/
« Q2: Whatis len (x) after this code runs?

with open("a-tale-of-two-cities.txt") as rdr:
for line in rdr:
x = list(line)

10 (the number of words in the last line)

59 (the number of characters in the last line)
16,282 (the number of lines in the file)
776,877 (the number of characters in the file)

oNw >

It's all just text?

170%,0,4V0.9,40.9%," V.U

1984,9,26.38,26.56,-0.19
1984,10,26.04,26.53,-0.49
1984,11,25.52,26.52,-1
1984,12,25.26,26.51,-1.25
1985,1,25.39,26.57,-1.17
1985,2,26.04,26.75,-0.71
1985,3,26.5,27.17,-0.67
1985,4,26.65,27.59,-0.93
1985,5,26.91,27.66,-0.75
1985,6,26.81,27.46,-0.65
1985,7,26.55,27.02,-0.47 AI y h b
1985,8,26.29,26.64,-0.35 Wa s a s e e n
1985,9,26.02,26.56,-0.55

1985,10,26.23,26.53,-0.3

1985,11,26.33,26.52,-0.2

1985,12,26.19,26.51,-0.32

1986,1,25.89,26.46,-0.56

1986,2,26.06,26.66,-0.6 ' o 2
1986,3,26.88,27.14,-0.26 It " J t t t
1986,4,27.49,27.58,-0.08 s a u S ex °
1986,5,27.41,27.68,-0.27
1986,6,27.42,27.43,-0.01
1986,7,27.18,27.01,0.17
1986,8,27.17,26.66,0.51
1986,9,27.24,26.59,0.65
1986,10,27.51,26.54,0.98
1986,11,27.7,26.5,1.2
1986,12,27.71,26.47,1.24
1987,1,27.68,26.46,1.22
1987,2,27.89,26.66,1.23
1987,3,28.27,27.14,1.13
1987,4,28.4,27.58,0.82
1987,5,28.56,27.68,0.88
1987,6,28.64,27.43,1.21

1987,7,28.58,27.01,1.57
1097 Q 99 A1 27¢ G 1 T

Humans love language

 All computer data is just bits
(base-2/binary digits)

« There are standards for using those bits
to encode text

« We don't need to know the details, but if
you're curious, the keywords you're looking
for are “ASCII" and “Unicode”

« Because humans love language, we
usually encode other data... as text

Humans love language

» Think about Python itself

 The actual code the machine runs (called
machine code) is just bits; it does not
resemble text!

» Python (and every other programming
language) is an attempt to textualize
computation to make it more human!

Wallowing in pedantry

 Be very careful about representing numbers

 Although we can't see the bits, an int or a
float are numbers stored as binary

e In a text file, the number is

« Converted to base-10 for ape convenience (or
was never bits in the first place),

 written in the glyphs used for numbers (digits),
then

« encoded as a string.

* Inshort: "42" and 42 are very different
things!

Spreadsheets

* |It's my friend and yours, spreadsheets!
 Basic idea:

e Different kinds of data form columns
e Connected data form rows

« Each piece of data is a cell in the row
« By convention, first row labels data

« Spreadsheet software is just a (very
different) computer programming
language

L et’'s look at data

« Some measurements of sea surface
temperature from NOAA

'wget https://student.cs.uwaterloo.ca/~cslld/src/nino34.csv

CSV

« Comma-Separated Values

« A common interchange format for
spreadsheets

* |.e., a shared format that everyone
understands. All spreadsheet software can
export as CSV.

* |t's just text!
* One row per line,
* cells separated by commas.

CSV

* Youcan just 1ine.split (",")

* str.split takes an optional argument, so
you can choose how to split your lines

e Let's show that in code

with open("nino34.csv") as nino:
for line in nino:

for col in line.split(","):

print (col)

CSV

e This worked for nino34.csv because NOAA is
pretty careful with their CSV files

« But, some details of CSV are messy and
annoying...

* Cells may be in quotes... or not
« Commas may have a space after them... or not

« There may be the same number of cells every
row/line... or not

CSV

e ... luckily, there's a module in Python that
already knows how to deal with all this!

import csv
with open("nino34.csv") as ninoCSV:
nino = csv.DictReader (n1noCSV)
for row of nino:
print (row)

CSV readers

 csv.DictReader (note the
capitalization!) gives us an iterable of
dictionaries

* typing.Iterable[dict[str, str]]
» The dictionary we got was string-to-string

 Most of the data was numbers, but how
was the reader to know that?

* We must convert as we go!

Using CSV data

* Let's find the monthly average
temperature for each month over the
recorded period

e (That is, the monthly average for January,
the monthly average for February, etc.)

averageOt

* First we'll need to recall our averageOf
function from earlier:

def averageOf (l: list[float]) -> float:
sum = 0.0
for val in 1:
sum = sum + val
return sum / len(1l)

Using CSV data

import csvt . hﬂ”miyourrangesl
measurements = .
13) ;/ Upper-bound exclusive!

for m 1in range (1,
measurements[m] = []
with open("nino34.csv") as ninoCSV:

nino = csv.DictReader (ninoCSV)
for row in nino:
measurements[int (row ["MON"])] .append (

float (row|["TOTAL"])
)

averages = {}
for m in range(l, 13):
averages |[m] = averageOf (measurements|[m])

print (averages)

Examining the labels

« Each cell of a row is called a field, and the
labels are the fields' names

* DictReaders let you see the list of fields:

with open("nino34.csv") as ninoCSV:
nino = csv.DictReader (ninoCSV)
for row in nino:
for field in nino.fieldnames:
print (field, "is", row[field])

fieldnames foibles

* The type of fieldnames is slightly

strange, because it may fail to detect
fields

 Use this incantation to get a sensible type
out:

fieldnames = list(rdr.fieldnames or [])

* This just means “if fieldnames are there,
convert them into a list, otherwise use an
empty list”

	L12
	Slide 1: Warmup (L12)
	Slide 2: Files
	Slide 3: Reading files
	Slide 4: Data
	Slide 5: Files
	Slide 6: Files
	Slide 7: Files
	Slide 8: Getting a file onto Jupyter
	Slide 9: Step one: fetch a file
	Slide 10: Step two: opening a file
	Slide 11: Text files
	Slide 12: Text files
	Slide 13: Text files
	Slide 14: File handles and cleanup
	Slide 15: open
	Slide 16: New type: iterable
	Slide 17: Python cleanup
	Slide 18: Python cleanup
	Slide 19: Step two: opening a file
	Slide 20: New syntax!
	Slide 21: Step three: using the data
	Slide 22
	Slide 23: Step three: using the data
	Slide 24: Step three: using the data
	Slide 25: That… kinda worked
	Slide 26: In-lecture quiz (L12)
	Slide 27: In-lecture quiz (L12)
	Slide 28: It’s all just text?
	Slide 29: It was all just text?
	Slide 30: Humans love language
	Slide 31: Humans love language
	Slide 32: Wallowing in pedantry
	Slide 33: Spreadsheets
	Slide 34: Let’s look at data
	Slide 35: CSV
	Slide 36: CSV
	Slide 37: CSV
	Slide 38: CSV
	Slide 39: CSV readers

	L13
	Slide 40: Using CSV data
	Slide 41: averageOf
	Slide 42: Using CSV data
	Slide 43: Examining the labels
	Slide 44: fieldnames foibles

