
Warmup (L13)

Create a function to sum every column in a
CSV file, returning a dictionary associating
each column name with the sum. You may
assume that every column contains only
numbers.

def sumEveryColumn(filename: str) -> dict[str, float]:

Using CSV data

• Let’s find the monthly average
temperature for each month over the
recorded period

• (That is, the monthly average for January,
the monthly average for February, etc.)

averageOf

• First we’ll need to recall our averageOf
function from earlier:

def averageOf(l: list[float]) -> float:

sum = 0.0

for val in l:

sum = sum + val

return sum / len(l)

Using CSV data
import csv

measurements = {}

for m in range(1, 13):

measurements[m] = []

with open("nino34.csv") as ninoCSV:

nino = csv.DictReader(ninoCSV)

for row in nino:

measurements[int(row["MON"])].append(

float(row["TOTAL"])

)

averages = {}

for m in range(1, 13):

averages[m] = averageOf(measurements[m])

print(averages)

Mind your ranges!
Upper-bound exclusive!

Examining the labels

• Each cell of a row is called a field, and the
labels are the fields’ names

• DictReaders let you see the list of fields:

with open("nino34.csv") as ninoCSV:

 nino = csv.DictReader(ninoCSV)

 for row in nino:

 for field in nino.fieldnames:

 print(field, "is", row[field])

fieldnames foibles

• The type of fieldnames is slightly
strange, because it may fail to detect
fields

• Use this incantation to get a sensible type
out:

fieldnames = list(rdr.fieldnames or [])

• This just means “if fieldnames are there,
convert them into a list, otherwise use an
empty list”

Unlabeled CSV

• The csv module also provides a CSV
reader that just splits into cells (no
dictionaries)

• csv.reader(fileHandle)

• Returns a
typing.Iterable[list[str]]

• Let’s use nino34.csv to demonstrate

• Most real data has labels, so it’s hard to find
a useful example that doesn’t!

Unlabeled CSV

import csv

with open("nino34.csv") as ninoCSV:

 nino = csv.reader(ninoCSV)

 for line in nino:

 print(line)

Writing files
CS114 (M6)

Writing

• So far we’ve been consuming data
produced by others

• We’ve output data to the screen (print)
and into variables, but not yet into files

• Let’s change that!

Opening in writing mode
• open has an optional second parameter

for the mode

• Actually, open has tons of optional

parameters, but we just care about this one

• open("output.txt", "w") means
“open output.txt for writing”

• WARNING: Python will happily overwrite
files you already have! Make sure you
know what you’re opening!

Reverse every line

• Let’s write a function to copy text from
one file to another, but reverse every line

Reverse every line

def reverseLines(

 outputFile: str, inputFile: str

) -> None:

 with open(outputFile, "w") as o:

 with open(inputFile) as i:

 for line in i:

 o.write(

 line.strip()[::-1] +

 "\n"

)

What’s this thing???

Line-break Hell!
• Remember: print automatically adds a line

break

• write doesn’t

• If we’d done write without the \n, it
would’ve written one very long line to the
file!

• This weird \n is an escape sequence: it means
“interpret this as a line break, even though
I’ve literally written a backslash and then an
n”

• (n stands for “new line”)

print is so smart

• print takes any number of arguments,
adds spaces, prints any type… it’s very
smart

• .write takes a string. Not smart.

• Python has a way of formatting values
into strings nicely: format strings

• To demonstrate, let’s write a function like
reverseLines, but writing some more

Formatted lines

def lineInfo(

 outputFile: str, inputFile: str

) -> None:

 with open(outputFile, "w") as o:

 with open(inputFile) as i:

 for line in i:

 o.write(

f"Line length: {len(line)}. Line

palindrome: {line}{line[::-1]}\n"

)

New syntax!

• Format strings are written like strings (in
quotes), but with an ‘f’ before the
opening quote

• In format strings, everything in braces ({})
is run as Python code, and its result put in
the string

• Extremely useful for writing to files, but
useful anywhere you want something
string’d

In-lecture quiz (L13)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: I tried to fix it but it’s still printing
double-spaced! Why?
with open("file.txt") as rdr:
 for line in rdr:
 line.strip()
 print(line)

A. strip is the wrong method

B. A for loop isn’t the right way to get lines

C. line.strip() doesn’t change line

D. Need rdr.strip(), not line.strip()

E. Python is cruel and vindictive

In-lecture quiz (L13)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What is the type of x?
with open("nino34.csv") as rdr:

 someCSV = csv.DictReader(rdr)

 x = list(someCSV)

A. This code has an error (no type)

B. list[str]

C. list[dict[str, float]]

D. list[dict[str, str]]

E. dict[str, list[float]]

Writing CSV files
CS114 (M6)

Writing CSVs

• Just like you can create a CSV reader for a
reading file handle, you can create a CSV
writer for a writing file handle

• DictWriter is a bit more fussy than
DictReader

• To demonstrate, let’s add a Fahrenheit
field from nino34.csv into nino34f.csv

Writing CSVs

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 fieldnames = list(nino.fieldnames or [])

 fieldnames.append("Fahrenheit")

 with open("nino34f.csv", "w") as ofh:

 ninoF = csv.DictWriter(ofh, fieldnames)

 ninoF.writeheader()

 for row in nino:

 row["Fahrenheit"] = (

 float(row["TOTAL"])*9/5+32

)

 ninoF.writerow(row)

Writing CSVs

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 fieldnames = list(nino.fieldnames or [])

 fieldnames.append("Fahrenheit")

 with open("nino34f.csv", "w") as ofh:

 ninoF = csv.DictWriter(ofh, fieldnames)

 ninoF.writeheader()

 for row in nino:

 row["Fahrenheit"] = (

 float(row["TOTAL"])*9/5+32

)

 ninoF.writerow(row)

DictWriter needs the field names to use

Writing CSVs

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 fieldnames = list(nino.fieldnames or [])

 fieldnames.append("Fahrenheit")

 with open("nino34f.csv", "w") as ofh:

 ninoF = csv.DictWriter(ofh, fieldnames)

 ninoF.writeheader()

 for row in nino:

 row["Fahrenheit"] = (

 float(row["TOTAL"])*9/5+32

)

 ninoF.writerow(row)

You must explicitly ask to write the first row
(The row with labels, the header)

Writing CSVs

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 fieldnames = list(nino.fieldnames or [])

 fieldnames.append("Fahrenheit")

 with open("nino34f.csv", "w") as ofh:

 ninoF = csv.DictWriter(ofh, fieldnames)

 ninoF.writeheader()

 for row in nino:

 row["Fahrenheit"] = (

 float(row["TOTAL"])*9/5+32

)

 ninoF.writerow(row)

Dictionaries are mutable, so we can simply add
Fahrenheit right into the row we already have

Writing CSVs

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 fieldnames = list(nino.fieldnames or [])

 fieldnames.append("Fahrenheit")

 with open("nino34f.csv", "w") as ofh:

 ninoF = csv.DictWriter(ofh, fieldnames)

 ninoF.writeheader()

 for row in nino:

 row["Fahrenheit"] = (

 float(row["TOTAL"])*9/5+32

)

 ninoF.writerow(row)

Since this is a dictionary writer, each row should be
a dictionary. It knows how to write the row from the

fieldnames you specified when creating it.

CSVs without labels

• DictWriter can write a file without
labels: just don’t use .writeheader()

• It still writes dictionaries though

• If you just want to use lists to write your
rows, you want
csv.writer(fileHandle)

• It behaves the same, but no
.writeheader(), and .writerow()
expects a list instead of a dictionary

Other file formats
CS114 (M6)

JSON

• CSV is structured, but two dimensional

• What if you have complex data with lists
and dictionaries and all sorts of stuff in it?

• JSON is a standard format for
complicated data

Example JSON

{

 "surname": "Richards",

 "given name": "Gregor",

 "height": 1.76,

 "places lived": ["USA", "Canada"]

}

• What an unfamiliar way of storing data!
Never seen anything like that!

JSON is from programming
• JSON looks like how you would store data

in a programming language, because…
that’s what it is

• It’s JavaScript Object Notation, and
JavaScript is a different programming
language

• Python’s syntax for data is nearly the
same

• This is partially because they share heritage,
and partially Python being influenced by
JSON

What can JSON do

• Strings

• Numbers

• Booleans

• Lists of anything it can store (including lists)

• Dictionaries

• Key must be a string

• Values can be anything JSON can store

Using JSON

• Python has a module for handling JSON:
import json

• json.load: Load JSON from a file handle

• json.loads: Load JSON from a string

• json.dump: Write JSON from a file handle

• json.dumps: Write JSON as a string

• Let’s demonstrate using our own ipynb
notebook, which is stored as JSON!

Using JSON
import json

with open("exercise.ipynb") as ifh:

 ipynb = json.load(ifh)

print(ipynb["cells"][0]["source"])

ipynb["cells"][0]["source"] = [

 "print('Hello, world!')"

]

with open("output.ipynb") as ofh:

 json.dump(ipynb, ofh)

Now we can look in output.ipynb!

JSON foibles
• Can’t store anything with cycles

• (Remember when we put a list reference in the
list? Yeah, can’t store that.)

• Can’t store every type

• Python will convert lots of things, but this
changes, e.g., tuples to lists

• References not preserved

• x = [[0], [0]]
x[0] = x[1]
x[0] is x[1] # True
x = json.loads(json.dumps(x))
x[0] is x[1] # False

JSON vs. CSV
• JSON is way harder to read and understand

than CSV

• CSV: Great when you have data that fits (2D-
ish?) and human readability is a critical
concern

• JSON: Useful when the data doesn’t fit CSV,
and the files are mainly for programs

• JSON preserves types better: because strings
are written in JSON with quotes, the JSON
loader can load numbers as numbers (not
strings)

JSON

JSON is very useful, but there’s little more
to say about it, because it directly relates to
programming data types

Remember that the filename extension is
just a hint. JSON files aren’t always named
.json.

SSV

• Occasionally you’ll see quasi-CSV files
where the data is separated by spaces
instead of commas

• Luckily, the csv module has lots of
parameters, and can handle this:

with open("nino34.ssv") as ifh:

 nino = csv.DictReader(ifh, delimiter=" ")

 for row in nino:

 print(row)

SSV

• Occasionally you’ll see quasi-CSV files
where the data is separated by spaces
instead of commas

• Luckily, the csv module has lots of
parameters, and can handle this:

with open("nino34.ssv") as ifh:

 nino = csv.DictReader(ifh, delimiter=" ")

 for row in nino:

 print(row)

(“Delimiter” is a synonym of “separator”)

TSV
• Third verse, same as the first: CSV, but

tabs instead of commas

• Tabs are whitespace used to keep
indentation consistent. Rather than a tab
always being the same width, it always
moves text to the same place.

• The escape for tab is \t. (So,
delimiter="\t")

• It’s unlikely you’ll ever encounter a TSV,
but they’re out there

XML

• Pray you never encounter XML

• You probably won’t, but it’s used in, e.g.,
PowerPoint files

• There’s an xml module. We shall discuss it
no further.

Binary formats

• There are file formats that aren’t text

• Mostly used when the amount of data is
huge

• A 5MP picture is worth about 2.5M words

• If you find yourself needing to use one,
search for the module that handles it;
there’ll usually be one!

Fun with files
CS114 (M6)

Word distribution CSV

• Let’s do another long demonstration

• We’ll continue our word distribution
example from A Tale of Two Cities, but

• fix our issues with non-word stuff,

• sort the result by frequency, instead of by
word, and

• store the result in a CSV file.

Step one: find the words

• We want a function that gets only the
words from a string, and drops all the
non-word symbols

• We actually have everything we need, but
it may not be obvious how

• Biggest trick here: string comparison

Step one: find the words

def words(line: str) -> list[str]:

 letters = ""

 for ch in line.lower():

 if ch >= "a" and ch <= "z":

 letters = letters + ch

 else:

 letters = letters + " " # So we’ll

 # still split

 return letters.strip().split()

Step one: find the words

def words(line: str) -> list[str]:

 letters = ""

 for ch in line.lower():

 if ch >= "a" and ch <= "z":

 letters = letters + ch

 else:

 letters = letters + " " # So we’ll

 # still split

 return letters.strip().split()

Because we lower-cased first, we didn’t need to check
the capitals case.

Aside: remember distribution

def distribution(

 lst: typing.Sequence

) -> dict[typing.Any, int]:

 r = {}

 for val in lst:

 if not (val in r):

 r[val] = 0

 r[val] = r[val] + 1

 return r

Step two: sort by frequency

• We did this in a warmup!

def dictValue(key: str) -> int:

 return dist[key]

byFreq = sorted(dist, reverse=True, key=dictValue)

Step three: write to CSV

• Let’s put it together, into one function
that takes the output (CSV) and input
(text) file as arguments

def wordDistributionCSV(

 outFilename: str, inFilename: str

) -> None:

 # 1: Words

 inWords = []

 with open(inFilename) as ifh:

 for line in ifh:

 inWords = inWords + words(line)

 # 2: Distribution and sorting

 dist = distribution(inWords)

 def dictValue(key: str) -> int:

 return dist[key]

 byFreq = sorted(dist, reverse=True, key=dictValue)

 # 3: Write CSV

 with open(outFilename, "w") as ofh:

 outCSV = csv.DictWriter(ofh, ["Word", "# of appearances"])

 outCSV.writeheader()

 for word in byFreq:

 outCSV.writerow({

 "Word": word,

 "# of appearances": dist[word]

 })

Another CSV demo

• We have two CSV files:

• Employee ID,Name

• Employee ID,Hourly wage

• We want a single CSV file that has
Employee ID,Name,Hourly Wage

• But, some data may be missing!

!wget https://student.cs.uwaterloo.ca/~cs114/src/employee_names.csv

!wget https://student.cs.uwaterloo.ca/~cs114/src/employee_wages.csv

import csv

import typing

employeeInfo: dict[int, dict[str, typing.Any]] = {}

def mkEmployeeInfo(id: int) -> dict[str, typing.Any]:

 if not (id in employeeInfo):

 employeeInfo[id] = {"Employee ID": id}

 return employeeInfo[id]

with open("employee_names.csv") as ifh:

 names = csv.DictReader(ifh)

 for row in names:

 id = int(row["Employee ID"])

 info = mkEmployeeInfo(id)

 info["Name"] = row["Name"]

with open("employee_wages.csv") as ifh:

 wages = csv.DictReader(ifh)

 for row in wages:

 id = int(row["Employee ID"])

 info = mkEmployeeInfo(id)

 info["Hourly wage"] = row["Hourly wage"]

with open("employee_info.csv", "w") as ofh:

 employeeCSV = csv.DictWriter(ofh, [

 "Employee ID", "Name", "Hourly wage"

])

 employeeCSV.writeheader()

 for employeeId in employeeInfo:

 info = employeeInfo[employeeId]

 if not ("Name" in info):

 info["Name"] = "!UNKNOWN!"

 if not ("Hourly wage" in info):

 info["Hourly wage"] = "!UNKNOWN!"

 employeeCSV.writerow(info)

This would be a pretty brutal way to add our
unknowns if we had more columns than this. Can you

think of another way?

Module summary
CS114 (M6)

Module summary

• Reading and writing text files line-by-line

• Reading and writing CSV files using
dictionaries or lists

• Reading and writing JSON data

• Moving data back and forth between files
and Python values

	L13
	Slide 1: Warmup (L13)
	Slide 2: Using CSV data
	Slide 3: averageOf
	Slide 4: Using CSV data
	Slide 5: Examining the labels
	Slide 6: fieldnames foibles
	Slide 7: Unlabeled CSV
	Slide 8: Unlabeled CSV
	Slide 9: Writing files
	Slide 10: Writing
	Slide 11: Opening in writing mode
	Slide 12: Reverse every line
	Slide 13: Reverse every line
	Slide 14: Line-break Hell!
	Slide 15: print is so smart
	Slide 16: Formatted lines
	Slide 17: New syntax!
	Slide 18: In-lecture quiz (L13)
	Slide 19: In-lecture quiz (L13)
	Slide 20: Writing CSV files
	Slide 21: Writing CSVs
	Slide 22: Writing CSVs
	Slide 23: Writing CSVs
	Slide 24: Writing CSVs
	Slide 25: Writing CSVs
	Slide 26: Writing CSVs
	Slide 27: CSVs without labels
	Slide 28: Other file formats
	Slide 29: JSON
	Slide 30: Example JSON
	Slide 31: JSON is from programming
	Slide 32: What can JSON do
	Slide 33: Using JSON
	Slide 34: Using JSON
	Slide 35: JSON foibles
	Slide 36: JSON vs. CSV
	Slide 37: JSON
	Slide 38: SSV
	Slide 39: SSV
	Slide 40: TSV
	Slide 41: XML
	Slide 42: Binary formats
	Slide 43: Fun with files
	Slide 44: Word distribution CSV
	Slide 45: Step one: find the words
	Slide 46: Step one: find the words
	Slide 47: Step one: find the words
	Slide 48: Aside: remember distribution
	Slide 49: Step two: sort by frequency
	Slide 50: Step three: write to CSV
	Slide 51
	Slide 52: Another CSV demo
	Slide 53
	Slide 54
	Slide 55: Module summary
	Slide 56: Module summary

