Warmup (L17)

* Plot sin (x) from 0 to 10 with three
degrees of precision. That is:

* One line plotting sin (x) but with very few
calculated points

* One line plotting sin (x) with more
calculated points

* One line plotting sin (x) with a lot of
calculated points



Boolean
Vector Logic

C5114 M3



Administrata note

* This topic is not covered in Think Python
(the first textbook on the course web
page) but is covered in Python for
Scientists (the second)

e It's new this term

« The module numbers will diverge from
Think Python from here on



Arrays of booleans



Vectorization

* np.vectorize makes a function act over
arrays instead of individual values

* All np.vectorize is really doing is

looping over the array and calling the
original function

« Thisis a slight oversimplification—you can, e.g., vectorize multi-
argument functions—but it's the basic idea



Vectorization

« The thing that was hard was making
functions with ifs, because Python will only
run one branch

def stepFunction(x: float) -> float:

i1f x < O:
Lieoourn Tl Python can’t choose to
eLiL x = 2- run the “i £” branch
return 0O ,
else: for certain parts of the
return 1 array and the “else”

branch for others



Masking

» There's another way to think about
vectorization: masking

» The idea of masking: wherever

(something) is true, do (something)

1.01

0.57

0.64

0.14

-0.09

0.96

Wherever the value is less than zero,

Example

1.01 0.57 0.64 0.14 -0.09 0.96
add 1
1.01 0.57 0.64 0.14 0.91 0.96




Etymology

* The idea is that you're “masking out” all
the other values so they're not touched

» More like masking tape (tape you put on a
wall where you don’t want to paint) than a
mask you wear



Masking in NumPy

« NumPy uses arrays of booleans to do
masking

« This makes for some new and surprising
behavior



Example: Discard out of range

 Basic case of masking: rather than doing
some operation with masked values, we
just want to get rid of them

- We have an array of numbers that are
supposed to be between 0 and 1, but due
to sampling error, some are outside that
range

e Discard the ones that are outside that
range



Example: Discard out of range

a = np.array ([
1.01, 0.57, 0.64, 0.14, -0.09, 0.96
1)

mask = np.logical and(a >= 0, a <= 1)

Unfortunately, and doesn’t work on arrays, but
NumPy provides a vectorized and: np.logical and

d = a[mask]



Example: Discard out of range

a = np.array ([
1.01, 0.57, 0.64, 0.14, -0.09, 0.96
1)

mask = (a >= 0) & (a <= 1)
This is sufficiently common that there’s a shorter
operator, &

d = a[mask]



Example: Discard out of range

a = np.array ([
1.01, 0.57, 0.64, 0.14, -0.09, 0.96
1)

mask = (a >= 0) & (a <= 1)

mask is just an array of booleans. We could’ve achieved the
same with np.array ([False, True, ..])

d = a[mask]



Example: Discard out of range

a = np.array (/|
1.01, 0.57, 0.64, 0.14, -0.09, 0.96

d = a[mask]

This is similar to slicing, but slicing doesn’t let you use
an array of booleans! It's masking! Copy out only the
parts of the array where the mask says “True”



Note

* The shorthand for np.logical andis &

* The shorthand for np.logical oris |
(the pipe symbol)



In-lecture quiz (L17)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

o Q wWw =

Q1: What is x after this code?
a = np.array([1.01, -0.09, 0.96, 0.0])
X = a < 0

. False
. True
. np.array([1])

. np.array([False, True, False, False])



In-lecture quiz (L17)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q2: | tried to mask out-of-range values,
but it didn't work! Why?

d = ala >= 0]
d = d[a <= 1] # This didn’t do what I want

A. The mask is for the wrong array

B. dis notan array, so can't be masked
C. There is no mask variable

D. You can't overwrite d



Left-slicing

CS114 (M8)



Left-slicing

« We've shown slicing to copy out part of a
ist (or array, or other sequence)

« With mutable sequences (lists, arrays),
you can slice on the left of an assignment
to mutate whole subparts

* The idea is the same as indexing on the left
to change a given slot

« We never did this with lists because it's
super-awkward if you can't do element-
wise operations



Terminology

This is usually called “slice assignment”, but
“left-slicing” or the related “LHS-slicing” are
also used



Example: Triangle building

- We have an array of numbers, and want
to replace all the numbers with a triangle
pattern

 Eg.,[0,1,2,3,2,1,0]0r[0,1,2,2,1,0]

» This isn't especially difficult to do with
loops, so let's do that version first



Example: Triangle building

a = np.zeros(41)
midpoint = len(a)//2 + len(a)%2
for 1dx in range (0, midpoint) :
alidx] = 1dx
al-l-1dx] = 1dx



Slice version

a = np.zeros(41)

midpoint = len(a)//2 + len(a)%2

for 1dx in range (0, midpoint) :
alldx:—1dx] = 1dx

N

This is —idx instead of -1-1idx because
the upperbound is exclusive



Slice version

a = np.zeros(41)

midpoint = len(a)//2 + len(a)%2

for 1dx in range (0, midpoint) :
alldx:—1dx] = 1dx

1

We are “oversetting” here, since we're
setting the subsequence, but only the
first and last will be kept.



Triangle building

* The slice version wasn't easier, and set
more than it needed to

S0 let's try something a bit trickier



Example: Pyramid building

* Now, let’'s bump it up. You have a 2D
array of numbers which you want to
replace with a pyramid of numbers.

* Now this is much more annoying to do
with loops: you need to loop over both x
and y, and there’s a whole square you
need to fill in!

« But with slicing on the left-hand side...



Example: Pyramid building

a = np.zeros((/7, 7))

midpoint = len(a)//2 + len(a)%2

for 1dx in range (0, midpoint) :
alldx:—1dx, 1dx:—-1dx] = 1dx



Aside: Left-slicing lists

» Slice-assignment/left-slicing on lists works
too... sort of

« Because nothing on lists is element-wise,
you need to assign a whole list

lst = [1, 2, 3, 4, 5]
lst[1l:] = 1 # CRASH
lst(1l:] = [1, 1, 1, 1] # OK




| thought we were talking
about masking?



Left-masking

* | said masks act sort of like slicing
» Like slices, they can also go on the left!

* SO, you can use a mask to choose what
parts of an array you change



Original example: Add 1 to negatives

« Our original example was
“Wherever the value is less than zero,
add one”

e Let's do that!



Original example: Add 1 to negatives

a = np.array ([
1.01, 0.57, 0.64, 0.14, -0.09, 0.96
1)

ala < 0] += 1

N

A lot is happening in this innocuous little line!
Let’s break it down.



Step one: Get the mask

* a < 0 getsthe mask
|t becomes

np.array([False, False, False, False, True, False])



Step two: Mask the array

 When you index by a mask, you get only

the True parts
(in this case, np.array ([-0.097) )

e ala < 0] should be read like “a where
the value in a is less than zero”

* a is used in both the array to mask and
the mask, but it's taking different roles

 You can use any mask that's the right size



Step three: Mask assignment

* A left-slice (slice assignment) lets you
update part of an array

« A mask behaves like a slice...

* SO, We can update a masked part of an

array!

ala < 0] += 1

« We're back to our original reading:
“Wherever a is less than zero, add one.”



Multiple changes

* Let's say for negative numbers we wanted to
add one and multiply by two

* This won’t work as expected.

1
ala < 0] *= 2

« Why not? We computed the mask twice, and
which numbers are negative changed!



Multiple changes

» Solution: save your masks!

« Remember, it's not the “a"” in the index
that made this work, it's the mask

mask = a
almask] +
almask] *

A

0
1
2



where

CS114 (M7)



if butno else

* |n effect, mask assignment is “1 £”, not
‘else”

* You can get “else” by "not"-ing the mask
(wherever this mask is not true):

mask = a < 0
almask] += 1
a[np.logical not (mask)] *= 2



if butno else

* |n effect, mask assignment is “1 £”, not
‘else”

* You can get “else” by "not"-ing the mask
(wherever this mask is not true):

mask = a < 0
al[mask] += 1
al~mask] *= 2

*This is sufficiently common that there’s a
shorter operator for it



where

 Everything I've shown modifies the
original array

* This is sometimes what you want, but not

always

« Having both an “i£"” and an “else”
branch and not moditying the array is

cumbersome, so NumPy has a function
for it




where

b = np.where (
a < 0, # Condition
a * -1, # Values to use where true
a * 2 # Values to use where false



Clamping

« My original problem was an array of

numbers that were supposed to be
oetween 0 and 1, but some were out of
oounds due to sampling issues

e Let's clamp them to the range 0 to 1

« (“Clamping” in this context means restricting, so values less
than 0 become 0, and values greater than 1 become 1)



Clamping step one: <0

a = np.array (/|
1.01, 0.57, 0.064, 0.14, -0.09, 0.96
1)

clamped = np.where (
a < 0, # if val < O:
0, # use O
a # else: original wvalue



Clamping step two: > 1

a = np.array (/|
1.01, 0.57, 0.064, 0.14, -0.09, 0.96

1)

clamped = np.where (
a < 0, # if val < O:
0, # use O

np.where (
a > 1, # elif wval > 1:

1, # use 1
a # else: original value



	L17
	Slide 1: Warmup (L17)
	Slide 2: Boolean Vector Logic
	Slide 3: Administrata note
	Slide 4: Arrays of booleans
	Slide 5: Vectorization
	Slide 6: Vectorization
	Slide 7: Masking
	Slide 8: Etymology
	Slide 9: Masking in NumPy
	Slide 10: Example: Discard out of range
	Slide 11: Example: Discard out of range
	Slide 12: Example: Discard out of range
	Slide 13: Example: Discard out of range
	Slide 14: Example: Discard out of range
	Slide 15: Note
	Slide 16: In-lecture quiz (L17)
	Slide 17: In-lecture quiz (L17)
	Slide 18: Left-slicing
	Slide 19: Left-slicing
	Slide 20: Terminology
	Slide 21: Example: Triangle building
	Slide 22: Example: Triangle building
	Slide 23: Slice version
	Slide 24: Slice version
	Slide 25: Triangle building
	Slide 26: Example: Pyramid building
	Slide 27: Example: Pyramid building
	Slide 28: Aside: Left-slicing lists
	Slide 29: I thought we were talking about masking?
	Slide 30: Left-masking
	Slide 31: Original example: Add 1 to negatives
	Slide 32: Original example: Add 1 to negatives
	Slide 33: Step one: Get the mask
	Slide 34: Step two: Mask the array
	Slide 35: Step three: Mask assignment
	Slide 36: Multiple changes
	Slide 37: Multiple changes
	Slide 38: where
	Slide 39: if but no else
	Slide 40: if but no else
	Slide 41: where
	Slide 42: where
	Slide 43: Clamping
	Slide 44: Clamping step one: < 0
	Slide 45: Clamping step two: > 1


