
Warmup (L17)

• Plot sin(x) from 0 to 10 with three
degrees of precision. That is:

• One line plotting sin(x) but with very few

calculated points

• One line plotting sin(x) with more

calculated points

• One line plotting sin(x) with a lot of

calculated points

Boolean
Vector Logic

CS114 M8

Administrata note

• This topic is not covered in Think Python
(the first textbook on the course web
page) but is covered in Python for
Scientists (the second)

• It’s new this term

• The module numbers will diverge from
Think Python from here on

Arrays of booleans
CS114 M8

Vectorization

• np.vectorize makes a function act over
arrays instead of individual values

• All np.vectorize is really doing is
looping over the array and calling the
original function

• This is a slight oversimplification—you can, e.g., vectorize multi-
argument functions—but it’s the basic idea

Vectorization

• The thing that was hard was making
functions with ifs, because Python will only
run one branch

def stepFunction(x: float) -> float:
if x < 0:

return -1
elif x < 2:

return 0
else:

return 1

Python can’t choose to
run the “if” branch

for certain parts of the
array and the “else”

branch for others

Wherever the value is less than zero,

add 1E
x

a
m

p
le

Masking

• There’s another way to think about
vectorization: masking

• The idea of masking: wherever
(something) is true, do (something)

1.01 0.57 0.64 0.14 -0.09 0.96

1.01 0.57 0.64 0.14 -0.09 0.96

1.01 0.57 0.64 0.14 0.91 0.96

Etymology

• The idea is that you’re “masking out” all
the other values so they’re not touched

• More like masking tape (tape you put on a
wall where you don’t want to paint) than a
mask you wear

Masking in NumPy

• NumPy uses arrays of booleans to do
masking

• This makes for some new and surprising
behavior

Example: Discard out of range

• Basic case of masking: rather than doing
some operation with masked values, we
just want to get rid of them

• We have an array of numbers that are
supposed to be between 0 and 1, but due
to sampling error, some are outside that
range

• Discard the ones that are outside that
range

Example: Discard out of range

a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

mask = np.logical_and(a >= 0, a <= 1)

d = a[mask]

Unfortunately, and doesn’t work on arrays, but
NumPy provides a vectorized and: np.logical_and

Example: Discard out of range

a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

mask = (a >= 0) & (a <= 1)

d = a[mask]

This is sufficiently common that there’s a shorter
operator, &

Example: Discard out of range

a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

mask = (a >= 0) & (a <= 1)

d = a[mask]

mask is just an array of booleans. We could’ve achieved the
same with np.array([False, True, …])

Example: Discard out of range

a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

mask = (a >= 0) & (a <= 1)

d = a[mask]

This is similar to slicing, but slicing doesn’t let you use
an array of booleans! It’s masking! Copy out only the

parts of the array where the mask says “True”

Note

• The shorthand for np.logical_and is &

• The shorthand for np.logical_or is |
(the pipe symbol)

In-lecture quiz (L17)

• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: What is x after this code?
a = np.array([1.01, -0.09, 0.96, 0.0])

x = a < 0

A. False

B. True

C. np.array([1])

D. np.array([False, True, False, False])

In-lecture quiz (L17)

• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: I tried to mask out-of-range values,
but it didn’t work! Why?
d = a[a >= 0]

d = d[a <= 1] # This didn’t do what I want

A. The mask is for the wrong array

B. d is not an array, so can’t be masked

C. There is no mask variable

D. You can’t overwrite d

Left-slicing
CS114 (M8)

Left-slicing
• We’ve shown slicing to copy out part of a

list (or array, or other sequence)

• With mutable sequences (lists, arrays),
you can slice on the left of an assignment
to mutate whole subparts

• The idea is the same as indexing on the left
to change a given slot

• We never did this with lists because it’s
super-awkward if you can’t do element-
wise operations

Terminology

This is usually called “slice assignment”, but
“left-slicing” or the related “LHS-slicing” are
also used

Example: Triangle building

• We have an array of numbers, and want
to replace all the numbers with a triangle
pattern

• E.g., [0, 1, 2, 3, 2, 1, 0] or [0, 1, 2, 2, 1, 0]

• This isn’t especially difficult to do with
loops, so let’s do that version first

Example: Triangle building

a = np.zeros(41)

midpoint = len(a)//2 + len(a)%2

for idx in range(0, midpoint):

 a[idx] = idx

 a[-1-idx] = idx

Slice version

a = np.zeros(41)

midpoint = len(a)//2 + len(a)%2

for idx in range(0, midpoint):

 a[idx:-idx] = idx

This is –idx instead of -1-idx because
the upperbound is exclusive

Slice version

a = np.zeros(41)

midpoint = len(a)//2 + len(a)%2

for idx in range(0, midpoint):

 a[idx:-idx] = idx

We are “oversetting” here, since we’re
setting the subsequence, but only the

first and last will be kept.

Triangle building

• The slice version wasn’t easier, and set
more than it needed to

• So let’s try something a bit trickier

Example: Pyramid building

• Now, let’s bump it up. You have a 2D
array of numbers which you want to
replace with a pyramid of numbers.

• Now this is much more annoying to do
with loops: you need to loop over both x
and y, and there’s a whole square you
need to fill in!

• But with slicing on the left-hand side…

Example: Pyramid building

a = np.zeros((7, 7))

midpoint = len(a)//2 + len(a)%2

for idx in range(0, midpoint):

 a[idx:-idx, idx:-idx] = idx

Aside: Left-slicing lists

• Slice-assignment/left-slicing on lists works
too… sort of

• Because nothing on lists is element-wise,
you need to assign a whole list

lst = [1, 2, 3, 4, 5]

lst[1:] = 1 # CRASH

lst[1:] = [1, 1, 1, 1] # OK

I thought we were talking
about masking?
CS114 (M8)

Left-masking

• I said masks act sort of like slicing

• Like slices, they can also go on the left!

• So, you can use a mask to choose what
parts of an array you change

Original example: Add 1 to negatives

• Our original example was
“Wherever the value is less than zero,
add one”

• Let’s do that!

Original example: Add 1 to negatives

a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

a[a < 0] += 1

A lot is happening in this innocuous little line!
Let’s break it down.

Step one: Get the mask

• a < 0 gets the mask

• It becomes
np.array([False, False, False, False, True, False])

Step two: Mask the array

• When you index by a mask, you get only
the True parts
(in this case, np.array([-0.09]))

• a[a < 0] should be read like “a where
the value in a is less than zero”

• a is used in both the array to mask and
the mask, but it’s taking different roles

• You can use any mask that’s the right size

Step three: Mask assignment
• A left-slice (slice assignment) lets you

update part of an array

• A mask behaves like a slice…

• so, we can update a masked part of an
array!

a[a < 0] += 1

• We’re back to our original reading:
“Wherever a is less than zero, add one.”

Multiple changes

• Let’s say for negative numbers we wanted to
add one and multiply by two

• This won’t work as expected:

a[a < 0] += 1

a[a < 0] *= 2

• Why not? We computed the mask twice, and
which numbers are negative changed!

Multiple changes

• Solution: save your masks!

• Remember, it’s not the “a” in the index
that made this work, it’s the mask

mask = a < 0

a[mask] += 1

a[mask] *= 2

where
CS114 (M7)

if but no else

• In effect, mask assignment is “if”, not
“else”

• You can get “else” by “not”-ing the mask
(wherever this mask is not true):

mask = a < 0

a[mask] += 1

a[np.logical_not(mask)] *= 2

if but no else

• In effect, mask assignment is “if”, not
“else”

• You can get “else” by “not”-ing the mask
(wherever this mask is not true):

mask = a < 0

a[mask] += 1

a[~mask] *= 2

This is sufficiently common that there’s a
shorter operator for it

where

• Everything I’ve shown modifies the
original array

• This is sometimes what you want, but not
always

• Having both an “if” and an “else”
branch and not modifying the array is
cumbersome, so NumPy has a function
for it

where

b = np.where(

 a < 0, # Condition

 a * -1, # Values to use where true

 a * 2 # Values to use where false

)

Clamping

• My original problem was an array of
numbers that were supposed to be
between 0 and 1, but some were out of
bounds due to sampling issues

• Let’s clamp them to the range 0 to 1

• (“Clamping” in this context means restricting, so values less
than 0 become 0, and values greater than 1 become 1)

Clamping step one: < 0
a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

clamped = np.where(

 a < 0, # if val < 0:

 0, # use 0

 a # else: original value

)

Clamping step two: > 1
a = np.array([

 1.01, 0.57, 0.64, 0.14, -0.09, 0.96

])

clamped = np.where(

 a < 0, # if val < 0:

 0, # use 0

 np.where(

 a > 1, # elif val > 1:

 1, # use 1

 a # else: original value

)

)

	L17
	Slide 1: Warmup (L17)
	Slide 2: Boolean Vector Logic
	Slide 3: Administrata note
	Slide 4: Arrays of booleans
	Slide 5: Vectorization
	Slide 6: Vectorization
	Slide 7: Masking
	Slide 8: Etymology
	Slide 9: Masking in NumPy
	Slide 10: Example: Discard out of range
	Slide 11: Example: Discard out of range
	Slide 12: Example: Discard out of range
	Slide 13: Example: Discard out of range
	Slide 14: Example: Discard out of range
	Slide 15: Note
	Slide 16: In-lecture quiz (L17)
	Slide 17: In-lecture quiz (L17)
	Slide 18: Left-slicing
	Slide 19: Left-slicing
	Slide 20: Terminology
	Slide 21: Example: Triangle building
	Slide 22: Example: Triangle building
	Slide 23: Slice version
	Slide 24: Slice version
	Slide 25: Triangle building
	Slide 26: Example: Pyramid building
	Slide 27: Example: Pyramid building
	Slide 28: Aside: Left-slicing lists
	Slide 29: I thought we were talking about masking?
	Slide 30: Left-masking
	Slide 31: Original example: Add 1 to negatives
	Slide 32: Original example: Add 1 to negatives
	Slide 33: Step one: Get the mask
	Slide 34: Step two: Mask the array
	Slide 35: Step three: Mask assignment
	Slide 36: Multiple changes
	Slide 37: Multiple changes
	Slide 38: where
	Slide 39: if but no else
	Slide 40: if but no else
	Slide 41: where
	Slide 42: where
	Slide 43: Clamping
	Slide 44: Clamping step one: < 0
	Slide 45: Clamping step two: > 1

