
Warmup problem (L18)

• Find approximately the median
temperature in nino34.csv by boolean
masking instead of sorting

• That is, start with a guess, then in a loop,
adjust the value until using it as a mask
selects half the values

Fun with masks
CS114 (M8)

Extended example

• Let’s look for outlier temperatures in
nino34.csv

• There are many definitions of “outlier”,
but we’ll use “more than two standard
deviations from the mean”

Step one: Read it in

• We need to read in the temperatures

• We also want a label for each
temperature (the month during which the
temperature occurred), so we’ll read the
year and month too

• We can’t append these into an array, so
we’ll build lists

Step one: Read it in

monsLst = []

tempsLst = []

with open("nino34.csv") as ifh:

nino = csv.DictReader(ifh)

for row in nino:

monsLst.append(f"{row['YR']}-{row['MON']}")

tempsLst.append(float(row["TOTAL"]))

Be careful of strings in format strings. This is why
strings can have either kind of quote!

Step one: Read it in

monsLst = []

tempsLst = []

with open("nino34.csv") as ifh:

 nino = csv.DictReader(ifh)

 for row in nino:

 monsLst.append(f"{row['YR']}-{row['MON']}")

 tempsLst.append(float(row["TOTAL"]))

The only thing that’s associating a month with a
temperature is that they’re at the same index in

each list. We could store dictionaries or
something, but then we couldn’t turn them into

arrays!

Step two: Masking

• We need to find the mean and standard
deviation

• We then need to find temperatures that
are outside of two std. devs.

• Remember, we also need to keep the
months for each temperature!

• NumPy has np.mean and np.std

Step two: Masking
mons = np.array(monLst)

temps = np.array(tempLst)

mean = np.mean(temps)

stddev = np.std(temps)

mask = (

 (temps < mean – 2*stddev) |

 (temps > mean + 2*stddev)

)

monsMasked = mons[mask]

tempsMasked = temps[mask]

Step two: Masking
mons = np.array(monLst)

temps = np.array(tempLst)

mean = np.mean(temps)

stddev = np.std(temps)

mask = (

 (temps < mean – 2*stddev) |

 (temps > mean + 2*stddev)

)

monsMasked = mons[mask]

tempsMasked = temps[mask]
Note that this mask was made from temps, but

it works fine with mons because they’re the
same size

Step three: Reporting

• Finally, let’s tell the user what months
were outliers in a clearer way than just
printing the arrays

Step three: Reporting

print(

 f"Mean temperature: {mean}. " +

 f"Std. dev.: {stddev}. " +

 f"Expected range: {mean-2*stddev} " +

 f"to {mean+2*stddev}"

)

print("Outlier samples:")

for idx in range(len(tempsMasked)):

 print(

 f" {monsMasked[idx]}: {tempsMasked[idx]}"

)

Bonus step four: Plotting

• Let’s plot the temperatures, and highlight
in red where they’re outliers

• Plotting the temperatures is relatively
easy, but marking the outliers will take
some work…

Step four: Plotting

plt.plot(temps)

xsMasked = np.array(range(len(temps)))[mask]

plt.plot(xsMasked, tempsMasked, "ro")

plt.show()

Step four: Plotting

plt.plot(temps)

xsMasked = np.array(range(len(temps)))[mask]

plt.plot(xsMasked, tempsMasked, "ro")

plt.show()

Since we didn’t provide xs, this just uses 0…len in the
x axis

Step four: Plotting

plt.plot(temps)

xsMasked = np.array(range(len(temps)))[mask]

plt.plot(xsMasked, tempsMasked, "ro")

plt.show()

So, this range is the same xs

Step four: Plotting

plt.plot(temps)

xsMasked = np.array(range(len(temps)))[mask]

plt.plot(xsMasked, tempsMasked, "ro")

plt.show()

When we mask this array like the temps array, we get
the xs associated with every masked temperature

In-lecture quiz (L18)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: If I hadn’t masked xs and just used
plt.plot(tempsMasked, "ro"), what
would my plot have shown?

A. Nothing (there would have been an error)

B. The right times would be plotted, but the
wrong temperatures

C. The right temperatures would be plotted,
but the wrong times

D. The masked xs were not needed; it would
plot exactly the same

In-lecture quiz (L18)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What is a after this code?
a = np.array([-2, -1, 0, 1, 2])

a[a < 0] *= -1

a[a > 0] *= -1

A. Nothing (this code has an error)

B. np.array([-2, -1, 0, -1, -2])

C. np.array([2, 1, 0, 1, 2])

D. np.array([2, 1, 0, -1, -2])

E. np.array([-2, -1, 0, 1, 2])

Masking and lists
CS114 (M8)

Lists can’t mask

• Remember: masks only work with arrays

• But, we can always convert lists to arrays

• Don’t be afraid to build a mask with
append just like any other list!

• Let’s read sparse data (data with missing
values) from a CSV and mask the missing
values

!wget https://student.cs.uwaterloo.ca/~cs114/src/sparse.csv

import csv
import numpy as np

with open("sparse.csv") as ifh:
 scores = csv.DictReader(ifh)
 fieldnames = list(scores.fieldnames or [])
 for row in scores:
 studentScores = []
 scoreMask = []
 for field in fieldnames:
 val = row[field]
 if field != "Student ID":
 if val == "":
 studentScores.append(0.0)
 scoreMask.append(False)
 else:
 studentScores.append(float(val))
 scoreMask.append(True)
 studentScoresA = np.array(studentScores)
 scoreMaskA = np.array(scoreMask)
 print(
 "Mean score:",
 np.mean(studentScoresA),
 ", mean of submitted:",
 np.mean(studentScoresA[scoreMaskA])
)

Saving and loading arrays
CS114 (M8)

Administrata note

• This has nothing to do with masking

• It’s here ’cause I had nowhere else to stick
it

Saving and loading

• NumPy has its “own” “format” for saving
and loading arrays

• Actually, it’s just SSV (space-separated
values), but it has convenience functions
for saving it!

Saving an SSV

a = np.array([1.1, 2.2, 3.3])

np.savetxt("my-vector.ssv", a)

b = np.array([

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

])

np.savetxt("my-matrix.ssv", b)

Formatting
• 1-dimensional array:

• One value per line

• Values written in the most ridiculous format
possible

• 2-dimensional array:

• One row per line

• Space-separated

• Values written in the most ridiculous format
possible

Loading an ssv

• Don’t forget csv! You can do this yourself!

• Or,

a = np.loadtxt("my-vector.ssv")

b = np.loadtxt("my-matrix.ssv")

Classes
CS114 M9

Administrata note

In Think Python, this is Module 8

Putting things in other
things
CS114 (M9)

Putting things in other things
• Modules have things in them (e.g.,
math.pi, np.sum)

• Values have things in them too (e.g.,
str.split, arr.shape)

• This is organizationally helpful, because
related things are together

• But it’s also helpful for types: you can’t
accidentally try to split anything but a
string, because split is in the string!

Putting things in other things

• Putting things in other things isn’t just for
built-in types: we can make our own
types!

• Let’s build a type that stores things like a
list (in fact, we’ll store things in a list), but
keeps track of the minimum, maximum,
sum, and mean as you go

Classes
• Types are defined by classes

• A class boxes up functions to make them
methods, and values to make them fields

• Fields are like arr.shape: accessible on the
values, but not functions, so not methods

• Collectively, methods and fields are the
“attributes” of the type

• We can make values from the class, and
they will have these attributes

Starting our class

class StatsList:

 """Stores a list of numbers

 and provides some simple

 statistics."""

 lst: list[float]

• Docstrings are like in functions: if I call
help(StatsList), I’ll get that string

• Fields are just listed with their types

Classes

• When a class is called as a function, it
makes a value that has these attributes

• We usually call such values objects, but…

• … all the values in Python are defined by
classes, so they’re all objects! That’s not true
in other programming languages.

• Let’s use our StatsList and see what
happens

Where are my fields?

x = StatsList()

print(x.lst) # CRASH! StatsList

 # has no attribute

 # lst!

• But I gave it a field lst! What’s going on?

Initializing classes
CS114 (M9)

Where are my fields?

• Something to remember about type
annotations from waaaaaay back: they’re
just documentation

• To have a field there, we have to put it
there

• We can add fields just like we add keys to
dictionaries. That is, just set them!

There are my fields!

x = StatsList()
x.lst = []
print(x.lst)

• This works now, but it’s a bit unsatisfying

• After all, when we make a NumPy array,
we didn’t have to make the array, then put
something in it

The initializer

• Classes can contain methods

• One method is used as the initializer

• (It’s called when you create a value in the
class)

• The initializer is named __init__

• That’s two underscores, then “init”, then two
underscores

	L18
	Slide 1: Warmup problem (L18)
	Slide 2: Fun with masks
	Slide 3: Extended example
	Slide 4: Step one: Read it in
	Slide 5: Step one: Read it in
	Slide 6: Step one: Read it in
	Slide 7: Step two: Masking
	Slide 8: Step two: Masking
	Slide 9: Step two: Masking
	Slide 10: Step three: Reporting
	Slide 11: Step three: Reporting
	Slide 12: Bonus step four: Plotting
	Slide 13: Step four: Plotting
	Slide 14: Step four: Plotting
	Slide 15: Step four: Plotting
	Slide 16: Step four: Plotting
	Slide 17: In-lecture quiz (L18)
	Slide 18: In-lecture quiz (L18)
	Slide 19: Masking and lists
	Slide 20: Lists can’t mask
	Slide 21
	Slide 22: Saving and loading arrays
	Slide 23: Administrata note
	Slide 24: Saving and loading
	Slide 25: Saving an SSV
	Slide 26: Formatting
	Slide 27: Loading an ssv
	Slide 28: Classes
	Slide 29: Administrata note
	Slide 30: Putting things in other things
	Slide 31: Putting things in other things
	Slide 32: Putting things in other things
	Slide 33: Classes
	Slide 34: Starting our class
	Slide 35: Classes
	Slide 36: Where are my fields?
	Slide 37: Initializing classes
	Slide 38: Where are my fields?
	Slide 39: There are my fields!
	Slide 40: The initializer

