
Sorting and Dictionaries
M5

in order? put things Why
CS114 M5

Sorting

• Lists can be in any order (whatever order
you put things in it)

• Some things would be easier if they were
in order: What’s the least value? The
most? The biggest gap?

• So, in some cases it’s useful to put things
in order

Sorting a list

• Lists have a method to do this!

lst = [2, 4, 6, 0, 1]

lst.sort()

print(lst) # [0, 1, 2, 4, 6]

Sorting a list

• Lists have a method to do this!

lst = [2, 4, 6, 0, 1]

x = lst

lst.sort()

print(x) # [0, 1, 2, 4, 6]

This sorts in place, so all references will see the same
sorting.

It’s just <

• Under the surface, it’s just using < to sort

• < works on numbers and strings, but not
between numbers and strings

lst = [99, "bottles of beer on the wall"]

lst.sort() # Error!

Surprising sorts!

• < can also compare lists, so .sort() can
sort a list of lists!

x = [[3], [2, 1]]

x[0] < x[1] # False

x.sort()

print(x) # [[2, 1], [3]]

Non-mutating sort

• .sort() mutates the list

• It’s a method of lists: doesn’t work on strings,
ranges, tuples

• Also a built-in function to sort any sequence,
by duplicating it into a list:

x = sorted("hello, world!")

print(x) # [" ", "!", ",", "d", "e",

 # "h", "l", "l", "l", "o",

 # "o", "r", "w"]

Least, greatest, gap

• Let’s solve exactly the question we started
with: find the least, greatest, and greatest
gap of a list

Least, greatest, gap

• Let’s solve exactly the question we started
with: find the least, greatest, and greatest
gap of a list

def lgg(lst: list[float]) -> tuple[float, float, float]:

 s = sorted(lst)

 greatestGap = 0.0

 for idx in range(0, len(lst)-1):

 gap = s[idx+1] – s[idx]

 if gap > greatestGap:

 greatestGap = gap

 return (s[0], s[-1], greatestGap)

Named parameters
CS114 M5

Read the documentation!
• Feeling a bit limited by .sort() and sorted? Remember

that help can tell us how to use anything!

help([1, 2, 3].sort)
Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list
instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable
(i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and
sort them,
 ascending or descending, according to their function
values.

 The reverse flag can be set to sort in descending order.

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

An “instance” is one thing from a type of things.
[1, 2, 3] is an instance of a list,

1 is an instance of an int

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

The asterisk (somewhat confusingly) says that there
are no normal parameters. We can’t do x.sort(42),

because what would the 42 mean?

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

But what are these things???

Reverse sort

• What if we want things backwards? .sort
has a parameter for reversing, but it doesn’t
look like a normal parameter…

• It’s a named parameter (or keyword
argument). To pass it in, you have to name it:

Reverse sort

• What if we want things backwards? .sort
has a parameter for reversing, but it doesn’t
look like a normal parameter…

• It’s a named parameter (or keyword
argument). To pass it in, you have to name it:

x = [2, 4, 6, 0, 1]

x.sort(reverse=True)

print(x) # [6, 4, 2, 1, 0]

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

OK, we saw “reverse”, but what does this mean?

Key sort

• Sorting normally uses <

• This only works on things you can
compare with <, but it’s also pretty limited

• What if I wanted to sort strings by their
length?

• .sort() provides a way to change the
sorting criteria: a key function

Sort strings by length

x = ["an", "excellent", "list", "of", "strings"]

x.sort(key=len)

print(x) # ["an", "of", "list", "strings", "excellent"]

Sort ints even/odd
def parity(val: int) -> int:

 return val%2

lst = [8, 6, 7, 5, 3, 0, 9]

s = sorted(lst, key=parity)

print("After sorted, lst is", lst)

print("Sorted:", s)

lst.sort(key=parity)

print("After .sort, lst is", lst)

[8, 6, 0, 7, 5, 3, 9]

Sort ints even/odd
def parity(val: int) -> int:

 return val%2

lst = [8, 6, 7, 5, 3, 0, 9]

s = sorted(lst, key=parity)

print("After sorted, lst is", lst)

print("Sorted:", s)

lst.sort(key=parity)

print("After .sort, lst is", lst)

[8, 6, 0, 7, 5, 3, 9]

NOTE: Sorting is “stable”. This means that if two
distinct values could go in either order (such as 8 and

0 here) it won’t swap them.

There’s much more!

• Let’s use help to learn about

• list.reverse

• list.index

• str.join

• str.split

• str.find

Dictionaries
CS114 M5

The trouble with tuples
• Here’s some info on me

info = (
 "Richards",
 "Gregor",
 1.76,
 "University of Waterloo",
 "Purdue University",
 2014,
 11
)

• … but, what means what?

Name your variables!

• Good variable naming is important to
understandable code

• Tuples essentially prevent that: the values
within the tuple just have indices

• If only we could group values together
but still name them all!

The dictionary

• Dictionaries store various values (like
tuples) but associate each value with a
“key”

• The key can be anything, but let’s start
with a string to demonstrate

Basic dictionary
info = {

 "surname": "Richards",

 "given name": "Gregor",

 "height": 1.76,

 "employer": "University of Waterloo",

 "alma mater": "Purdue University",

 "graduation year": 2014,

 "employment years": 11

}

print(

 info["given name"], info["surname"],

 "works at", info["employer"]

)

New syntax!

• Dictionaries are written in curly braces: {
and }

• Dictionaries contain key-value pairs: if you
use this key, you will find this value

• Key-value pair written with a colon
key: value e.g. "surname": "Richards"

• The key is any Python value (confusingly), so
strings can be used as names as done here

Dictionaries are mutable

• Dictionaries are mutable reference types

• Value can be changed by setting it

info["employment years"] = 12

print(info["employment years"]) # Now 12

Dictionary powers
CS114 M5

Expanding and contracting

• Dictionaries can be expanded by setting
new keys

print(info["citizenship"]) # ERROR!

info["citizenship"] = ["USA"]

print(info["surname"]) # Still there

print(info["citizenship"]) # Now also there

Expanding and contracting

• With dictionaries, “in” is key presence

if "age" in info:

 print("This person is", info["age"], "years old")

Expanding and contracting

• Remove a key (and its value) with .pop

info.pop("employer") # Fired for tormenting

 # Science students

print(info["employer"]) # ERROR!

Typing dictionaries

• The type for a dictionary is dict

• If you know the key and value types, and
they’re consistent, dict[key, value]

• You can use typing.Any for either key or
value if one is consistent but the other
isn’t

• This will become clearer when we write
some code, so…

Distribution

• Let’s write a function to count the number
of instances of each value in a sequence

• e.g. in [8, 6, 7, 5, 3, 0, 9, 2, 4, 6, 0, 1], we want
8 associated with 1, 6 associated with 2, etc.

Distribution

import typing

def distribution(
 lst: typing.Sequence
) -> dict[typing.Any, int]:
 r = {}
 for val in lst:
 if not (val in r):
 r[val] = 0
 r[val] = r[val] + 1
 return r

print(distribution([
 8, 6, 7, 5, 3, 0, 9, 2, 4, 6, 0, 1
]))

Before incrementing
the value in the

dictionary, we need
to make sure there’s

something there

Almost a chart

• Building on distribution, let’s make a
simple distribution chart by printing as
many *s as there are instances of each
value

• We need one trick first:
"*" * 3 == "***"

Almost a chart (first try)
def distributionChart(

 lst: typing.Sequence

) -> None:

 dist = distribution(lst)

 for key in dist:

 print(key, "*" * dist[key])

• for with a dictionary loops over keys

• This version is a bit unsatisfying, because
it’s printed in whatever order they first
appeared in the sequence

Ordered chart

• To loop in order, we’re going to have to
sort the keys

• To do that, we need to get the keys as a
sequence (we can sort any sequence)

• But we could for over it: the keys were
already a sequence!

• In short: when you treat a dictionary as a
sequence, it’s a sequence of keys.

Ordered chart

def distributionChart(

 lst: typing.Sequence

) -> None:

 dist = distribution(lst)

 for key in sorted(dist):

 print(key, "*" * dist[key])

• Bonus: This isn’t specific to lists! Works with
any sequence, even strings!

Careful with floats!

• Remember that floats lie

annoying = {}

annoying[0.3-0.2] = "Hello"

annoying[0.1] = "world"

print(annoying)

Conversions
CS114 M5

Converting to a dictionary
• Technically, dict can be used to convert a

sequence to a dictionary…

• but, it wants a sequence of key-value
pairs, with each pair as a tuple:
x = dict([(0, 0), (1, 1), (2, 4), (3, 9)])

• That’s a pretty unlikely type to find unless
you specifically intended to make a
dictionary with it (and if you did, why
didn’t you just put it in a dictionary in the
first place?)

Converting to a dictionary

• More generally, it usually doesn’t make
sense to convert to a dictionary. Here’s how
you might:

def toDictionary(
 seq: typing.Sequence
) -> dict:
 r = {}
 for idx in range(len(seq)):
 r[idx] = seq[idx]
 return r

Fun with dictionaries
CS114 M5

Memoization

• Memoization is remembering the result of
a computation so that if the same
computation is requested again, we can
reuse the previous result

• Dictionaries are great for memoization!

• Let’s memoize our divisors function

Memoized divisors

• Original for reference

def divisors(x: int, y: int) -> list[int]:

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 return r

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Python will usually guess the type if you don’t tell it,
but it doesn’t like mystery dictionaries, so we had to

put a type annotation here.

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

Yes, even tuples can be the key!
(Fits really well here, since we have two arguments)

Memoized divisors
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r

memo changes every time we call this, so the next
time, we’ll see the changes made from the last time

Memoized divisors

• Big red flag on that example: lists are
mutable!

lst = divisors(2, 4)

lst.append("a bag full of squirrels")

print(divisors(2, 4)) # [1, 2,

 # "a bag full of

 # squirrels"]

Memoized divisors (fixed)
memo: dict[tuple[int, int], int] = {}

def divisors(x: int, y: int) -> list[int]:

 if (x, y) in memo:

 return memo[(x, y)][:]

 r = []

 i = 1

 while i <= x and i <= y:

 if x%i == 0 and y%i == 0:

 r.append(i)

 i = i + 1

 memo[(x, y)] = r

 return r[:]

Real histogram

• We made a distribution function, but real
histograms divide things into bins

• Let’s make a binning histogram

• Stage one: make bins

• Given a minimum and maximum value,
divide that range into a given number of
bins

• (Note: We’re going to do this in a more complex way than is
needed to demonstrate lists and sorting and dictionaries.)

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

What a complicated type! Well, a bin is a range (a
minimum and maximum for that bin), so it’s two

numbers. Thus, our set of bins will be a list of those
pairs.

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

We know how many bins we want, but there’s nothing
else to loop over, so we simply loop over the bin

number (0, 1, …, binCt-1).

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

Each bin is a tuple (mind your parentheses!)

Real histogram: bins
def bins(

 min: float, max: float,

 binCt: int

) -> list[tuple[float, float]]:

 bins = []

 span = max - min

 for binNum in range(binCt):

 bins.append((

 span/binCt*binNum + min,

 span/binCt*(binNum+1) + min

))

 return bins

What’s this math? We split the range into binCt many
bins (span/binCt), and this is bin #binNum

(*binNum). But, that just split up the span, i.e., max-
min. To get it back into range, we need to add on min.

Real histogram: bins

• There is a problem with the bins we just
made: what part of the range is inclusive
vs. exclusive?

• If we say it’s lower-bound-inclusive,
upper-bound-exclusive, then the max
value won’t actually go into any bin…

• We’ll take that approach, and just fix the
max value later.

Real histogram: find my bin

• Step two: Which bin does this value
belong to?

• Given a list of bins and a value, choose
the appropriate bin

• To solve the exclusivity problem, we’ll also
look for values that don’t seem to be in
any bin

Real histogram: find my bin
def findBin(

 val: float,

 bins: list[tuple[float, float]]

) -> tuple[float, float]:

 # Fix the exclusivity problem

 if val <= bins[0][0]: # min

 return bins[0]

 if val >= bins[-1][1]: # max

 return bins[-1]

 # Look for a matching bin

 for bin in bins:

 if val >= bin[0] and val < bin[1]:

 return bin

 # Some default if the above somehow fails

 return bins[-1]

Real histogram: find my bin
def findBin(

 val: float,

 bins: list[tuple[float, float]]

) -> tuple[float, float]:

 # Fix the exclusivity problem

 if val <= bins[0][0]: # min

 return bins[0]

 if val >= bins[-1][1]: # max

 return bins[1]

 # Look for a matching bin

 for bin in bins:

 if val >= bin[0] and val < bin[1]:

 return bin

 # Some default if the above somehow fails

 return bin[-1]

Our squishy human brains can deduce that this
return is unnecessary (we can never get here), but

Python doesn’t know that, so we put a default return
to make the type checker happy.

Real histogram: make the histogram

• Finally, let’s put it together and make a
histogram for a list!

Real histogram
def histogram(
 values: list[float],
 binCt: int
) -> dict[tuple[float, float], int]:
 s = sorted(values)
 vBins = bins(s[0], s[-1], binCt)
 r = {}
 # Each bin starts empty
 for bin in vBins:
 r[bin] = 0
 # Add the values
 for val in values:
 bin = findBin(val, vBins)
 r[bin] = r[bin] + 1
 return r

Real histogram

def histogramChart(

 lst: list[float], binCt: int

) -> None:

 hist = histogram(lst, binCt)

 for key in sorted(hist):

 print(key, "*" * hist[key])

Invert dictionary

• Let’s invert a dictionary (swap keys for
values)

Invert dictionary

def invertDictionary(inDict: dict) -> dict:

 outDict = {}

 for key in inDict:

 outDict[inDict[key]] = key

 return outDict

Invert dictionary

• That inversion is imperfect, because of
how keys work: multiple keys can have
the same value

• Let’s make a version that inverts into a list
(the list of all keys that had the same
value)

Invert dictionary

def invertDictionaryList(

 inDict: dict

) -> dict[typing.Any, list]:

 outDict = {}

 for key in inDict:

 val = inDict[key]

 if not (val in outDict):

 outDict[val] = []

 outDict[val].append(key)

 return outDict

Module summary
CS114 M5

Module summary

• Sort with .sort or sorted

• Sort can reverse

• Sort can take a “key”

• Dictionaries associate keys (different kind
of keys) with values

• Dictionaries are mutable

• Looping over dictionaries

	Slide 2: Sorting and Dictionaries
	Slide 3: in order? put things Why
	Slide 4: Sorting
	Slide 5: Sorting a list
	Slide 6: Sorting a list
	Slide 7: It’s just <
	Slide 8: Surprising sorts!
	Slide 9: Non-mutating sort
	Slide 10: Least, greatest, gap
	Slide 11: Least, greatest, gap
	Slide 12: Named parameters
	Slide 13: Read the documentation!
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Reverse sort
	Slide 19: Reverse sort
	Slide 20
	Slide 21: Key sort
	Slide 22: Sort strings by length
	Slide 23: Sort ints even/odd
	Slide 24: Sort ints even/odd
	Slide 28: There’s much more!
	Slide 31: Dictionaries
	Slide 32: The trouble with tuples
	Slide 33: Name your variables!
	Slide 34: The dictionary
	Slide 35: Basic dictionary
	Slide 36: New syntax!
	Slide 37: Dictionaries are mutable
	Slide 38: Dictionary powers
	Slide 39: Expanding and contracting
	Slide 40: Expanding and contracting
	Slide 41: Expanding and contracting
	Slide 42: Typing dictionaries
	Slide 43: Distribution
	Slide 44: Distribution
	Slide 45: Almost a chart
	Slide 46: Almost a chart (first try)
	Slide 47: Ordered chart
	Slide 48: Ordered chart
	Slide 49: Careful with floats!
	Slide 50: Conversions
	Slide 51: Converting to a dictionary
	Slide 52: Converting to a dictionary
	Slide 53: Fun with dictionaries
	Slide 54: Memoization
	Slide 55: Memoized divisors
	Slide 56: Memoized divisors
	Slide 57: Memoized divisors
	Slide 58: Memoized divisors
	Slide 59: Memoized divisors
	Slide 60: Memoized divisors
	Slide 61: Memoized divisors (fixed)
	Slide 62: Real histogram
	Slide 63: Real histogram: bins
	Slide 64: Real histogram: bins
	Slide 65: Real histogram: bins
	Slide 66: Real histogram: bins
	Slide 67: Real histogram: bins
	Slide 68: Real histogram: bins
	Slide 69: Real histogram: find my bin
	Slide 70: Real histogram: find my bin
	Slide 71: Real histogram: find my bin
	Slide 72: Real histogram: make the histogram
	Slide 73: Real histogram
	Slide 74: Real histogram
	Slide 75: Invert dictionary
	Slide 76: Invert dictionary
	Slide 77: Invert dictionary
	Slide 78: Invert dictionary
	Slide 79: Module summary
	Slide 80: Module summary

