Warmup (L1)

* Log in to Jupyter:
https://jupyter.math.uwaterloo.ca/

 Create a new Notebook for “Python 3
(ipykernel)”.

« Write this into Jupyter and press the run
button:

'wget https://student.cs.uwaterloo.ca/~cslld/src/Assignment-00.1ipynb

« Open “Assignment-00.ipynb” in the left panel
« Do what the first box says.

CS114

Module 1: Introduction

Administrata

Administrata

« The course web site is the central “hub”
for course information:

 https://student.cs.uwaterloo.ca/~cs114/

 The course outline and contact info for
course staff is there

* Instructor: Gregor Richards
 Coordinator: Scott Freeman King

e |SAs and IAs: cs114@uwaterloo.ca

Tools and software

* In this course you will be learning to use one
popular programming language: Python
« We will mostly be running Python in a web

environment called “Jupyter”, by creating so-
called “Jupyter Notebooks".

e Jupyter is a popular environment to use
Python on the web, but you will also learn to
run it on your own computers.

e All software in this course is free

Resources

« Slides: Available on course web site (after each
lesson day)

* Jupyter notebook: Available from Math
department, https://jupyter.math.uwaterloo.ca/

« Assignments: Linked from course web site
« Textbook: Optional, linked via course web page

 Alternate textbook: Also optional, available via
library access online

e Later in the term you will need a computer to run
Python locally

Tutorials

« There are mandatory tutorial problems in
this course

 Tutorials without tutorial problems are
hands-on experience

« No tutorials this week, they start next week
(Friday the 16t)

« TUTORIALS WILL BE HELD IN COMPUTER LABS:
MC2062 and MC2063 (use either)

e This is not the classroom shown in Quest,
because Quest doesn't let us assign computer
labs

Office hours

* Instructor and ISAs have office hours
« Some are in the Physics Tutorial Center

« Other students in the PTC can help, but only
our ISAs know this course. Make sure you
check who you're talking to!

» The schedule will be posted on the course
web page
* Also start next week

Web resources

* Piazza: Course discussion should go here.
Make sure you're signed up. Also a sort of
“always-there” office hours.

 Web site:
https://student.cs.uwaterloo.ca/~cs114/ .
This is the hub for all online resources
(everything else is linked from here).

« Some parts of the course web site may only
appear later this week or next week.

Course components

« Assignments (see outline)
 Tutorial problems (go to Tutorials!)
* Exams

* You must pass the exam weighted average to
pass the course!

In-lecture quizzes/participation
Marking scheme described in outline (soon)
Review academic policies in outline as well

Academic integrity

» Cheating on assignments is a disservice to

yourself: you won't be prepared for exams,

and you must pass the exams to pass the
course

* The elephant in the room: Al

 Al'is stupid and bad at everything. It feels like
the opposite when you ask it about something
you're not an expert at. It will feel much smarter
than you at Python until you learn how
mediocre its solutions are.

 Learning to use Al properly is valuable, but you
must be the expert. Use ot Al is disallowed on
most assignments.

When is it cheating?

 You are allowed and encouraged to talk
to other students about concepts

* You cross the line when you talk about
code or solutions

« When in doubt, refrain or ask a member
of course staff

 Feel free to ask on Piazza in a private post

Assignments

* Programming is 10% writing code, 90%
figuring out why your code doesn’t work

e (That's just as true of somebody with
decades of experience as somebody with
days of experience!)

e Start assignments early! Don't judge time
by how long you spend programming.
Debugging is most of the time!

Tutorial problems

» Tutorial problems are programming
problems done in tutorial

» The ISA will do their best to provide
(tutorial) support, but you have to write it
yourself, with limited time

* Problems are designed to be solvable in
an hour, but the same logic applies:
expect to spend most of the hour
debugging!

Submissions

» A uwaterloo CS system called Markus.

* https://markus.student.cs.uwaterloo.ca/

« Assignments and tutorial problems are
graded in three stages:

 Correctness (your code does the right thing)
e Stage 1: automatic in Markus when you submit

 Stage 2: by TAs after the deadline
» Stage 3: Style (your code is understandable)

A subset of Python

« Python is way bigger than we're going to
learn in this course

 You are not required to stick to the subset
we'll see in this course

« Unfortunately, code that uses advanced
features looks like Al ®

 So, if you do, tell us (in the code) where
you learned the features! Cite your
sources!

Computation

What is computation?

* I'm from the last generation that was told
this by our teachers:
“You won't always have a calculator with you!”

 This advice means well but totally misses
the point: knowing how to multiply in
your head doesn't help you know when
multiplication is needed

» Applying math is a creative endeavor

Calculation

e Calculation is the
mechanics of math

« (Addition,
subtraction,
multiplication,
division, etc.)

« Example: two-body
problem

Two-body problem

Given two
astronomical bodies’
positions and
velocities, we can
predict their locations
and velocities with a
simple mathematical
expression: just plug
in the time

Computation

» Calculation with
repetition and
decision making

* Must take a step,
then use its results
to decide what to
do next

« Example: n-body
problem

n-body problem

With the addition of
even a third
astronomical body,
the problem becomes
chaotic. Every
movement affects the
expression. Can no
longer predict
indefinitely in one
calculation.

n-body problem

Instead, we must
calculate one small
step (a second, a
day, a week...), then
adjust based on the
new positions.
Repeat, over and
over, until we reach
the time we want.

Computation

« Computation is more powerful than
calculation

» A computer is to computation as a
calculator is to calculation: it is just a
dumb computing machine

» Correctly applying computation is a
Creative endeavor

A creative endeavor...

The bad news:

| can’t teach you to creatively apply
computation to a problem. No one can.

All I can do is teach you the tools, and give
you problems to (hopefully) build your
intuition.

Computation and Python

» The only language computers directly
understand is electrical impulses

 That's... not very human

» Software exists to translate abstract
expressions of computation into those
electrical impulses

 Python is one such piece of software, and
the name for the language to express
computation

Why Python

* There are thousands (probably hundreds
of thousands) of programming languages

* Why this one?
« Reasons for language choice are extrinsic
» Scientists use Python

* |t's not that Python is magically good at
science, but scientists use Python, and
momentum begets momentum

def advance(dt, n, bodies, pairs):
for 1 in range(n):
for ([x1, vy1, z1], vl1l, ml,
(%2, yv2, z2], V2, mZ2) 1n palrs:

dx = x1 - x2
dy = yl - y2
dz = z1 - z2
dist = sgrt(dx * dx + dy * dy + dz * dz)
mag = dt / (dist*dist*dist)
blm = ml * mag

bZ2m = mZ2 * mag

v1i[0] -= dx * bZm
vli[1l] -= dy * bZ2m
vli[2] -= dz * bZ2m
v2([2] += dz * blm
vZ2[1l] += dy * blm
v2[0] += dx * blm

for (r, [vx, vy, vz], m) 1in bodies:
r(0] += dt * vx
r[l] += dt * vy
r[(2] += dt * vz

def advance(dt, n, bodies, pairs):
for 1 in range(n):
for ([x1, vy1, z1], vl1l, ml,
(%2, yv2, z2], V2, mZ2) 1n palrs:
dx = x1 - x2
dy = yl - y2
dz = z1 - z2

C dist = sgrt(dx * dx + dy * dy + dz * dz)
.S2 mag = dt / (dist*dist*dist)
?6 blm = ml * mag
— b2m = m2 * mag
D) v1[0] -= dx * b2m
O vl[1l] -= dy * b2m
q0) v1i[2] -= dz * bZm
@) v2[2] += dz * blm
v2[1l] += dy * blm
v2[0] += dx * blm

for (r, [vx, vy, vz], m) 1in bodies:
r[(0] += dt * wvx
r[l] += dt * vy
r[(2] += dt * vz

def advance(dt, n, bodies, pairs):
for 1 in range(n):
for ([x1, vyl1, z1], vl, ml,
(%2, y2, z2], V2, mZ2) 1n palrs:
dx = x1 - x2
dy = yl - y2
dz = z1 - z2

- dist = sqrt(dx * dx + dy * dy + dz * dz)
O mag = dt / (dist*dist*dist)
= blm = ml * mag
7;3 bZ2m = m2 * mag
Q v1[0] -= dx * b2m
O v1[1l] -= dy * b2m
Q v1[2] -= dz * b2m
ad v2[2] += dz * blm
v2[1l] += dy * blm
v2[0] += dx * blm

for (r, [vx, vy, vz], m) 1in bodies:
r[(0] += dt * wvx
r[l] += dt * vy
r[(2] += dt * vz

But | thought computers did x

« Everything else is just set dressing on
computation

« When a computer is displaying this slide,
the shape of each letter is computed
through a piece of software called a font
rasterizer

 (etc., etc., etc.)

Be the emperor of your
computer

Jupyter

* Let's open a Jupyter notebook and see
some Python

* https://jupyter.math.uwaterloo.ca/

« Other Jupyter servers are available, and you can even
run your own, but we'll be using Math’s here

« If you ever need an alternate Jupyter server, Google
Colab is free

Jupyter as a calculator

4(7+42)%?

e Let's calculate

« Note that the result is not an integer, and
it's shown rounded (not as an exact
fraction)

 Be careful of this rounding; it's real!
« Python has BEDMAS/PEMDAS

Jupyter as a computer

» Python is an imperative programming
language

« What this means is that you're giving the
computer a sequence of commands
(synonym: imperatives) to run in order

* You're in command. I/t only does what you
ask. Imperative comes from the same
root as emperor (in Latin, imperator)

Syntax of a program

« Syntax: The grammar of a (programming)
language

« Our commands are statements

« Mathematical calculations are expressions

» Statements contain expressions

Jupyter as a computer

e Calculations are usually incomplete
commands

« For convenience, Jupyter will show the result of
the last calculation, but not others

* |f you want it to output the result, command
it to do so!

* ... by asking it to “print”, for silly historical
reasons

print (expression) Or
print (expression, expression..)

New syntax!

« What's going on with “print (..)"?
* print is a procedure, and this is a
procedure call

* (Actually, we far more often use the word
“function”)

« A procedure is a way of boxing up and
parameterizing computational steps

Procedures vs. functions

Brief pedantry aside:

Technically, functions are mathematically
pure (they aren’'t composed of imperative
steps) and procedures are not. In practice,

programmers usually don’t make this
distinction, so we'll call print a function.

Strings

* YOu may want to print text, not just
numbers

 In Python, a piece of text is called a string

» Just surround it in quotes:
print ("Hello, world!")

(Single quotes also work, and are more common than
double quotes. | use double quotes because I'm old.)

The power of change

» Make your steps do something by storing
values in variables

e Store to a variable with =
X = 472

 Retrieve the value by using the name
x / 12

The power of change

» Variables are variable. You can not only
set them, but change them.

X =
print ("x 1is", Xx)
X = x * 6 # Huh???

print ("x 1is", Xx)

« Mathematicians hate it!
(This isn't what “variable” or “=" mean in math)

One step at a time

 Remember, we're running commands in
order

* |f you change a variable after it's been
used, that use is in the past

X =
y = X * 2
X = x * 3

print ("x 1is", Xx)
print ("y is", v)

Variable names

e Variable name must
e start with a letter or underscore, and

 contain only letters, underscores, and
numerical digits. In particular, no spaces.

« Nothing stops you from overwriting
print or other functions (other than
common sense), so try not to step on
your own toes!

Variable names

» Multiple words in a variable name:
snake case and camelCase are both

common.
» Style conventions:

 Use either snake case Or camelCase, but
be consistent

« Use descriptive names (not x) wherever
possible

Jupyter is weird

 Enter this into a cell and run it;
z = 47

» Then clear the cell, and replace it with
this:
z /T

* YoU'll notice that it shows a result. It
remembered z.

Jupyter is weird

* This “hidden state” is there so that cells can
work together (set z in one cell, use it in
another)

 But, can allow cells to work together through
time (set z in one cell, delete that
assignment, then use it anyway)

» To make sure you're not relying on this,
occasionally use the “run all” button

 This resets all the variables (called “restarting
the kernel”)

Comments

* In an earlier example, I snuck in the
qguestion “Huh?":

e x = xXx * 6 # Huh??2?

* This is cal

led a comment. You can make

your code easier to read by describing

what's ha
e Starts wit

« Canbe a

opening using comments.
N a #, goes to the end of the line

ine of its own

More power

 Right now we have a five-function
calculator

« The functions in a scientific calculator are
available in a module called math

« Modules are bundles of functions, values,
variables, or anything else, grouped
together for organization

Pythogoras

* Let's calculate the length of the
nypotenuse of a right triangle given the
ength of its two sides

Pythogoras

* Let's calculate the length of the
nypotenuse of a right triangle given the
ength of its two sides

import math
math.sgrt (a**2 + b**2)

Smarter imports

 You can also import a specific name

from math import sgrt, 1log
sgqrt(a**2 + b**2)

* There’s no consistent style for whether to
import specific names or whole modules. Use
whatever is readable. You do not have to be
consistent if importing multiple modules.

Too many things!

* The math module provides a /ot of

functions... and there are a /ot of
modules!

» Find what's in it with the tab key
« The help function gives you help on
anything you've imported
help(sgrt)
* You can also use the dir function

(instead of tab) to find what's in a module
dir (math)

	L1
	Slide 1: Warmup (L1)
	Slide 2: CS114
	Slide 3: Administrata
	Slide 4: Administrata
	Slide 5: Tools and software
	Slide 6: Resources
	Slide 7: Tutorials
	Slide 8: Office hours
	Slide 9: Web resources
	Slide 10: Course components
	Slide 11: Academic integrity
	Slide 12: When is it cheating?
	Slide 13: Assignments
	Slide 14: Tutorial problems
	Slide 15: Submissions
	Slide 16: A subset of Python
	Slide 17: Computation
	Slide 18: What is computation?
	Slide 19: Calculation
	Slide 20: Two-body problem
	Slide 21: Computation
	Slide 22: n-body problem
	Slide 23: n-body problem
	Slide 24: Computation
	Slide 25: A creative endeavor…
	Slide 26: Computation and Python
	Slide 27: Why Python
	Slide 28
	Slide 29
	Slide 30
	Slide 31: But I thought computers did x
	Slide 32: Be the emperor of your computer
	Slide 33: Jupyter
	Slide 34: Jupyter as a calculator
	Slide 35: Jupyter as a computer
	Slide 36: Syntax of a program
	Slide 37: Jupyter as a computer
	Slide 38: New syntax!
	Slide 39: Procedures vs. functions
	Slide 40: Strings

	L2
	Slide 42: The power of change
	Slide 43: The power of change
	Slide 44: One step at a time
	Slide 45: Variable names
	Slide 46: Variable names
	Slide 47: Jupyter is weird
	Slide 48: Jupyter is weird
	Slide 49: Comments
	Slide 50: More power
	Slide 51: Pythogoras
	Slide 52: Pythogoras
	Slide 53: Smarter imports
	Slide 54: Too many things!

