Warmup (L2)

Print "Hello, world!", with the space,
without putting a space in your string.

That is,
print ("Hello, world!")

v

But, no space allowed here!
Get it to print the space without writing this space.

Reusing (functions)

Back to Pythagoras

 Note how | wrote the code:
sqrt (a**2 + b**2)

« What's this g and b?

« We want to use this code for any value of
aand b

 Right now, if we need it twice, we have to
rewrite this code!

Functions

« We already saw functions such as print
and sqgrt

« Now let's write one of our own!

Functions

« We already saw functions such as print
and sqgrt

« Now let's write one of our own!

def pythagoras(a, b):
return sgrt(a**2 + b**2)

Functions

« We define a function with the keyword def

(A keyword is a word that has a special meaning
in the programming language, other than just a
name)

« We want this function to be parameterized

« Similar to sgrt. We need to be able to tell sgrt

what we want to square-root, and we need to
be able to tell pythagoras the sides of our

triangle

Functions

Define Function name Parameters

\ L

def pythagoras (a,
return sgrt(a**2 + b*¥*2)

\

Body of the function (what it actually does)

Functions

Header

def pythagoras(a, b):
return sgrt(a**2 + b*¥*2)

\

Body is indented past the header
(that's how Python knows it's the body!)

Functions

 Defining the function doesn't make
anything happen
« We have to call the function for it to run

def pythagoras(a, b):
return sgrt(a**2 + b**2)

[...]
pythagoras (3, 4)

Functions

A function can be any number of steps

def pythagoras (a, b):
asquared = a**2Z
bsquared = b**2
return sqgrt (asquared + bsquared)

Functions

Functions can define and use
their own variables

def pythagora
asquared
bsquared

return sqgrt (asquared + bsquared)

Functions and variables

« They are the function’s own variables
« They don't exist outside of the function:

def pythagoras(a, b):

asquared = a ** 2

bsquared = b ** 2

return sgrt (asquared + bsquared)
pythagoras (3, 4)
print (asquared) # ERROR!

Functions and variables

« Parameters are also variables
 YOoUu can overwrite them

def pythagoras(a, b):
a = a ** 2
b =Db ** 2
return sqgrt(a + Db)

 This is usually confusing and should usually
be avoided, but use common sense

Local vs. global

e Variables within a function are /local
variables of that function

 Variables outside the function (defined
for the whole kernel) are global variables

Pedantry aside

I've used the terms “parameter” and “argument”

* In pythagoras, a and b are parameters

e The value you actually pass in is the argument:
the argument fills the parameter

The confusion: if we talk about what pythagoras
does, we'll talk about a and b as their future values,
the arguments

Often used interchangeably, but technically not the
same

Functions calling functions

« Our pythagoras function calls sgrt

« We can also call our own functions in
functions

def pythagoras (a, b):
return sgrt(a**2 + b**2)
[...]
def pythagoras3(a, b, c):
return sqgrt (pythagoras(a, b)**2 + c**2)

Returning

 Here, we use a call to pythagoras as a

value in a calculation. What actual
number is used in the calculation?

def pythagoras(a, b):
return sgrt(a**2 + b**2)
[...]
def pythagoras3(a, b, c¢):
return sgrt (pythagoras(a, b)**2 + c**2)

Returning

 The return statement of the

pythagoras function gives a value to
whoever called pythagoras

def pythagoras(a, b):
return sgrt (a**2 + b**2)

[...]
def pythagoras3(a, & c) :
return sqgrt (pythagoras(a, b)**2 + c**2)

Returning

 WARNING! Returning ends the function,
even if there are more statements left!

def pythagoras(a, Db):
return sqgrt(a**2 + b**2)
print ("This will never be printed!")

« Why would you want this? We'll see when
we get to decision-making.

Functions calling functions

e print is also a function

* Very useful for understanding and
debugging code!

def pythagoras3(a, b, c):
h = pythagoras(a, b)
print ("Hypotenuse of one face:", h)
return sgrt (h**2 + c**2)

To return or not?

A function doesn’t have to explicitly
return

def pythagoras(a, b):
sgrt (a**2 + b**2)

e But, if it doesn't, the value it returns is
“None”, a special value that means “there
IS no value”.

None is Hell

« Why have functions return None?

« We want functions that are just there to
do something, rather than returning
something...

 but Python has no way of distinguishing
these two kinds of functions.

* S0, Python needed something for
x = print ("Whoops!") to do.

None is Hell

 YOU can store None in a variable and
Python won't report anything wrong

* YOU can pass None as an argument to a
function, and it'll work until (and unless!)
it's used

 Forgetting to return causes a problem to
arise distant from the actual error in the
code

Bugs, bugs, bugs!

Debugging

* Time for debugging!

from math import sqgrt
def pythagoras (a, b):
sgrt (a**2 + b**2)
def pythagoras3(a, b, c):
return sqgrt (pythagoras(a, b)**2 + c**2)
print (pythagoras3 (4, 5, 6))

Debugging

One thing to be careful of when debugging:
errors happen when code runs, so if you
don't run a buggy function, you won't see
the problem!

from math import sqgrt
def pythagoras (a, b):
sgqrt (a**2 + b**2)
def pythagoras3(a, b, c):
return sqgrt (pythagoras(a, b)**2 + c**2)
print (pythagoras (4, 5))

Avoiding bugs

* Develop incrementally (one small step at
a time), using print to spot-check

e Let's make a distance function (distance
between two points) incrementally...

def distance(x1l, v1, x2, vy2):

Avoiding bugs: printing

« Make sure whatever you print is

descriptive/unique enough that you know
which is which

def pythagoras(a, b):
asquared = a ** 2
print ("a squared:", asquared)
bsquared = b ** 2
print ("b squared:", bsquared)
r = sqgrt (asquared + bsquared)
print ("result:", r)
return r

Avoiding bugs: printing

Don't be afraid to introduce variables just so that
you can print something from the middle of a

calculation!
def pythagora D)
asquare a ** 2
print (J/a squared:", asquared)
bsg = b ** 2
prpMt ("b squared:", bsquared)
r = sqgrt (asquared + bsquared)

print ("result:", r)
return r

Avoiding bugs: printing

 When you're done debugging, make sure

you remove the prints. They'll confuse
our tests!

* You can also comment out prints, so you
can remove them without forgetting them

def hypotenuse(a, b):
print("a was", a)
return sgrt(a**2 + b**2)

Avoiding bugs: documentation

 Part of avoiding bugs is good documentation

* You shouldn't name a function
“pythagoras”

* The Pythagorean theorem is an implementation
detail

« When you're calling the function, you don't care
how it's implemented

* |t should've been named "“hypotenuse”

Avoiding bugs: documentation

« Remember the help function?

 We can (and should!) document our
functions in the same way, with docstrings

* Let's add a docstring to pythagoras

Avoiding bugs: documentation

def pythagoras(a, Db):
Return the length of the
hypotenuse of a right
triangle with side lengths a
and b.

return sgrt(a**2 + b*¥*2)

	Slide 1: Warmup (L2)
	Slide 2: Reusing (functions)
	Slide 3: Back to Pythagoras
	Slide 4: Functions
	Slide 5: Functions
	Slide 6: Functions
	Slide 7: Functions
	Slide 8: Functions
	Slide 9: Functions
	Slide 10: Functions
	Slide 11: Functions
	Slide 12: Functions and variables
	Slide 13: Functions and variables
	Slide 14: Local vs. global
	Slide 15: Pedantry aside
	Slide 16: Functions calling functions
	Slide 17: Returning
	Slide 18: Returning
	Slide 19: Returning
	Slide 20: Functions calling functions
	Slide 21: To return or not?
	Slide 22: None is Hell
	Slide 23: None is Hell
	Slide 25: Bugs, bugs, bugs!
	Slide 26: Debugging
	Slide 27: Debugging
	Slide 28: Avoiding bugs
	Slide 29: Avoiding bugs: printing
	Slide 30: Avoiding bugs: printing
	Slide 31: Avoiding bugs: printing
	Slide 32: Avoiding bugs: documentation
	Slide 33: Avoiding bugs: documentation
	Slide 34: Avoiding bugs: documentation

