
Warmup (L2)

Print "Hello, world!", with the space,
without putting a space in your string.

That is,

print("Hello, world!")

But, no space allowed here!
Get it to print the space without writing this space.

Reusing (functions)
CS114 M1

Back to Pythagoras

• Note how I wrote the code:
 sqrt(a**2 + b**2)

• What’s this a and b?

• We want to use this code for any value of
a and b

• Right now, if we need it twice, we have to
rewrite this code!

Functions

• We already saw functions such as print
and sqrt

• Now let’s write one of our own!

Functions

• We already saw functions such as print
and sqrt

• Now let’s write one of our own!

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Functions

• We define a function with the keyword def

• (A keyword is a word that has a special meaning
in the programming language, other than just a
name)

• We want this function to be parameterized

• Similar to sqrt. We need to be able to tell sqrt
what we want to square-root, and we need to
be able to tell pythagoras the sides of our
triangle

Functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Define Function name Parameters

Body of the function (what it actually does)

Functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

Header

Body is indented past the header
(that’s how Python knows it’s the body!)

Functions

• Defining the function doesn’t make
anything happen

• We have to call the function for it to run

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

pythagoras(3, 4)

Functions

• A function can be any number of steps

def pythagoras(a, b):

 asquared = a**2

 bsquared = b**2

 return sqrt(asquared + bsquared)

Functions

def pythagoras(a, b):

 asquared = a**2

 bsquared = b**2

 return sqrt(asquared + bsquared)

Functions can define and use
their own variables

Functions and variables

• They are the function’s own variables

• They don’t exist outside of the function:

def pythagoras(a, b):

 asquared = a ** 2

 bsquared = b ** 2

 return sqrt(asquared + bsquared)

pythagoras(3, 4)

print(asquared) # ERROR!

Functions and variables

• Parameters are also variables

• You can overwrite them

def pythagoras(a, b):

 a = a ** 2

 b = b ** 2

 return sqrt(a + b)

• This is usually confusing and should usually
be avoided, but use common sense

Local vs. global

• Variables within a function are local
variables of that function

• Variables outside the function (defined
for the whole kernel) are global variables

Pedantry aside

• I’ve used the terms “parameter” and “argument”

• In pythagoras, a and b are parameters

• The value you actually pass in is the argument:
the argument fills the parameter

• The confusion: if we talk about what pythagoras
does, we’ll talk about a and b as their future values,
the arguments

• Often used interchangeably, but technically not the
same

Functions calling functions

• Our pythagoras function calls sqrt

• We can also call our own functions in
functions

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• Here, we use a call to pythagoras as a
value in a calculation. What actual
number is used in the calculation?

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• The return statement of the
pythagoras function gives a value to
whoever called pythagoras

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

[…]

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

Returning

• WARNING! Returning ends the function,
even if there are more statements left!

def pythagoras(a, b):

 return sqrt(a**2 + b**2)

 print("This will never be printed!")

• Why would you want this? We’ll see when
we get to decision-making.

Functions calling functions

• print is also a function

• Very useful for understanding and
debugging code!

def pythagoras3(a, b, c):

 h = pythagoras(a, b)

 print("Hypotenuse of one face:", h)

 return sqrt(h**2 + c**2)

To return or not?

• A function doesn’t have to explicitly
return

def pythagoras(a, b):

 sqrt(a**2 + b**2)

• But, if it doesn’t, the value it returns is
“None”, a special value that means “there
is no value”.

None is Hell

• Why have functions return None?

• We want functions that are just there to
do something, rather than returning
something…

• but Python has no way of distinguishing
these two kinds of functions.

• So, Python needed something for
x = print("Whoops!") to do.

None is Hell

• You can store None in a variable and
Python won’t report anything wrong

• You can pass None as an argument to a
function, and it’ll work until (and unless!)
it’s used

• Forgetting to return causes a problem to
arise distant from the actual error in the
code

Bugs, bugs, bugs!
CS114 M1

Debugging

• Time for debugging!

from math import sqrt

def pythagoras(a, b):

 sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras3(4, 5, 6))

Debugging

One thing to be careful of when debugging:
errors happen when code runs, so if you
don’t run a buggy function, you won’t see
the problem!

from math import sqrt

def pythagoras(a, b):

 sqrt(a**2 + b**2)

def pythagoras3(a, b, c):

 return sqrt(pythagoras(a, b)**2 + c**2)

print(pythagoras(4, 5))

Avoiding bugs

• Develop incrementally (one small step at
a time), using print to spot-check

• Let’s make a distance function (distance
between two points) incrementally…

def distance(x1, y1, x2, y2):

 …

Avoiding bugs: printing

• Make sure whatever you print is
descriptive/unique enough that you know
which is which

def pythagoras(a, b):
 asquared = a ** 2
 print("a squared:", asquared)
 bsquared = b ** 2
 print("b squared:", bsquared)
 r = sqrt(asquared + bsquared)
 print("result:", r)
 return r

Avoiding bugs: printing

•

def pythagoras(a, b):
 asquared = a ** 2
 print("a squared:", asquared)
 bsquared = b ** 2
 print("b squared:", bsquared)
 r = sqrt(asquared + bsquared)
 print("result:", r)
 return r

Don’t be afraid to introduce variables just so that
you can print something from the middle of a

calculation!

Avoiding bugs: printing

• When you’re done debugging, make sure
you remove the prints. They’ll confuse
our tests!

• You can also comment out prints, so you
can remove them without forgetting them

def hypotenuse(a, b):

 # print("a was", a)

 return sqrt(a**2 + b**2)

Avoiding bugs: documentation

• Part of avoiding bugs is good documentation

• You shouldn’t name a function
“pythagoras”

• The Pythagorean theorem is an implementation
detail

• When you’re calling the function, you don’t care
how it’s implemented

• It should’ve been named “hypotenuse”

Avoiding bugs: documentation

• Remember the help function?

• We can (and should!) document our
functions in the same way, with docstrings

• Let’s add a docstring to pythagoras

Avoiding bugs: documentation

def pythagoras(a, b):

 """

 Return the length of the

 hypotenuse of a right

 triangle with side lengths a

 and b.

 """

 return sqrt(a**2 + b**2)

	Slide 1: Warmup (L2)
	Slide 2: Reusing (functions)
	Slide 3: Back to Pythagoras
	Slide 4: Functions
	Slide 5: Functions
	Slide 6: Functions
	Slide 7: Functions
	Slide 8: Functions
	Slide 9: Functions
	Slide 10: Functions
	Slide 11: Functions
	Slide 12: Functions and variables
	Slide 13: Functions and variables
	Slide 14: Local vs. global
	Slide 15: Pedantry aside
	Slide 16: Functions calling functions
	Slide 17: Returning
	Slide 18: Returning
	Slide 19: Returning
	Slide 20: Functions calling functions
	Slide 21: To return or not?
	Slide 22: None is Hell
	Slide 23: None is Hell
	Slide 25: Bugs, bugs, bugs!
	Slide 26: Debugging
	Slide 27: Debugging
	Slide 28: Avoiding bugs
	Slide 29: Avoiding bugs: printing
	Slide 30: Avoiding bugs: printing
	Slide 31: Avoiding bugs: printing
	Slide 32: Avoiding bugs: documentation
	Slide 33: Avoiding bugs: documentation
	Slide 34: Avoiding bugs: documentation

