Warmup (L3)

Create a cell in Jupyter that has a different
behavior the first time you run it than the
second time you run it.

Note 1: You may need to create and run
another cell first to set up the environment

Note 2: Your cell may show an error when you
run it, but as long as it also has different
output it works

Bonus: Make the cell have a different behavior
every time you run it

Docstrings

» The docstring is the first statement in a
function

* Triple-quote can be used to make a multi-
line string anywhere; it's only a docstring
when it's the first statement

def sillystring() :
return Tvwvew

Hello world!
""" # This is not a docstring

Docstrings

* |[n this course, you must write a docstring
for every function you write

 Your code is graded not just for
correctness (doing what it's supposed to)
but for documentation and readability!

Docstrings

« Conventions for good docstrings:

» Refer to parameters by name

""".. with side lengths a and b."""
not
""". with the two sides.”"""

Docstrings

« Conventions for good docstrings:

 Describe what it does, not how it does it

"""Return the length.."""
Nnot
"""Return sqrt(a**2+b**2)"""

Docstrings

« Conventions for good docstrings:

* The docstring should be a command for the
function to obey

"""Return the length.."""
Nnot
"""Computes the length.."""

Comments

« Comments (with #) should be used to clarify

* It's assumed that whoever's reading the code
knows English and Python, so

e If your variable names are good and the steps
are obvious, you may not need comments to
make the code understandable

* but, err on the side of caution:; use comments
where it might be confusing

« Assume the reader is as stupid as possible
while still being able to read English and Python

Avoiding bugs: types

 We've seen numbers and we've seen
strings
« Look at the result of hypotenuse: note

how hypotenuse (3, 4) iswritten as
5.0, not just 5

* Internally, Python stores integers and
rationals differently

* |t is often useful to distinguish between
them

Numeric types

* In Python, we can store a number as an
int ora float. int corresponds to
integers. f1oat corresponds to rationals
(and is used to approximate reals).

* Since all integers are rationals, we can
store an integer as a float.

* If a number could have been a non-integer,
it's usually a float, evenifitis an integer in
practice!

Numeric types

* In Python, we can store a number as an
int ora float. int corresponds to
integers. f1oat corresponds to rationals
(and is used to approximate reals).

* Note “corresponds to"” here. An int can
store any integer (as long as your
computer has enough memory!), but
floats have limited capacity. It's hard to
intuit about, so just remember: it's
rounded!

Float?

« “float” stands for “floating point”

* |t means the point (the dot separating the
integer part from the fractional part) can
float (be anywhere within the number)

« Don’t overthink the name. It's just a
name.

Numeric types

* |t mostly won't matter how a number is
stored (float or int)

e ... butit can. We'll see situations later
where it matters.

« You can convert in a few ways:
float (42) # 42.0

int (41.999) # 41
round (41.999) # 42

Documenting types

* |t's often useful to document what type
you expect something to be

* If it's the wrong type, your code will do
something unexpected!

« When writing a function, you can (and
should!) document the types of its
parameters and the type it returns

Documenting types

def hypotenuse(a: float, b: float) -> float:
return sqgrt (a**2 + b**2)

* These type annotations are
documentation. Even if they're wrong,
your code will run.

* |[f you set up Jupyter with
Assignment-00.ipynb, it will warn you

when they're wrong

Documenting types

 Although documentation, annotations are
so-called checked documentation

« That is, they don't change your code (just
document it), and yet we can check that
they're correct

* |f you don't use types as you describe
them, you'll get typing errors, but your
code will still run

int vs float

« Everyinteger is a rational, so it's tempting to write
float everywhere

 This is poor documentation! If you expect an integer,
write int

def stableNeutrons (protons: 1nt) -> float:

wiww

Return approximately how many neutrons
are needed to stabilize a nucleus with

this many protons.

wiirw

return protons * 1.5

Type errors

« Using an unexpected type won't always
stop your code from running

« But it can. E.g., trying to treat None like a
number will cause an error

print (42)/(7) # Note wrong parentheses

* Let's explore the errors reported by the
above code (it's a lot!)

Typing errors vs type errors

 Typing errors (or type-checking errors)
are about the documented types. Code
doesn't have to run to check, and errors
don't prevent code from running.

» Type errors happen while code is running,
and stop it from running further

« Both are about types, and the names are
confusing, but they're distinct

Learning to read errors

« Making errors readable and understandable
IS an area of active research (no, really!)

 For typing errors:
 Look for “expected” and “got”.

« Think about which way data is moving (into
parameters, out of returns)

 For type errors and other errors:

« Start from the end and work your way
backwards to understand where it's happening

Learning to read errors

 Let's explore some errors

e print (42/7
def hello () :
print ("World")

* def return|() :
return 42

* def curious{():
return sqgrt (9)
* fancy:fancy:variable = 42
e def weird(x):
X = X * 5
return x

In-lecture quizzes

* This course has in-lecture quizzes
» These are strictly for participation

 Try to give a correct answer, but any answer
gets the points

* Linked on the course web page
* https://student.cs.uwaterloo.ca/~cs114/quiz/

In-lecture quiz (L3)

 https://student.cs.uwaterloo.ca/~cs114/quiz/

m o N wm >

Q1: What does this code print?

X = 1
y = X * 3
X = 2

print ("y=", V)
Nothing or an error
y=3

y= 3

V=0

y= 0

In-lecture quiz (L3)
* https://student.cs.uwaterloo.ca/~cs114/quiz/

* Q2: What does this code print?
def=4
defy = def * 3
print("defy", defy)

» Nothing or an error
« defy 4

« defy 12

 defy defy

Testing

CS114 M1

Testing

« Bad development: keep poking at it until
it looks right

« Good development: write examples of
how it should behave, then write it until it
does behave

« Running these examples is testing

Assertions

« Python has a built-in technique for
testing: assert

as-sert (asserted; asserting; asserts)
transitive verb
1a: to state or declare positively and often
forcefully or aggressively

(— Merriam Webster dictionary)

* You assert (declare) something to be true,
then fix your code ‘til it is ©

Assertions

assert hypotenuse (3, 4) == 5, "3-4-5 triangle"
The test Name for the test

(what you want to be true) (documentation)

Assertions

assert hypotenuse (3, 4) == 5, "3-4-5 triangle"

Since = is variable
assignment, == is equality

Assertions

assert hypotenuse (3, 4) == 5, "3-4-5 triangle"

f

But do not use == with floats!!!
(Remember, they're rounded!)

Assertions

assert "3-4-5 triangle"

Note no parentheses. assert is a keyword, not a

function! If you add parentheses with the test
name, it won't do what you think!

Let's look at
assert(l == 0, "Math is broken")

Testing with floats

« floats have limited precision

* Internally, they're scientific notation in base-2, so have
limited base-2 significant figures, but don't try to intuit
about base-2 scientific notation...

» The precision can go wrong in very
surprising ways:

assert 0.3-0.2 == 0.1, "Math too simple to fail"

Imprecise numbers, imprecise tests

 Always test floating points with a range,
called the tolerance, to avoid precision
problems

 Simplest way to test with tolerance is
|result — expected| < tolerance

* In Python, that looks like this:

assert abs((0.3 - 0.2) - 0.1) < 0.001, "Precision problems!"

Imprecise numbers, imprecise tests

Re< Expected
assert abs((0.3 - 0.2) - 0.1) < 0.001, "Precision problems!"

\

abs is the absolute
value function Range here is 0.001

(don't overthink it)

< is less-than

Imprecise numbers, imprecise tests

« Use similar code any time your numbers
won't be integers

assert abs (hypotenuse (4, 5) - 6.4031242) < 0.001, ™"."

Code style

* In this course, every function must have
« A docstring,
* parameter and return types, and

« at least two test assertions (other than the
ones we provide you)

Code style

« We set two tests as a minimum
« For most functions, it won't be enough
 Think about corner cases

* ... but don't overthink it. Just make up
some tests.

Other assertions

 assert is often used for tests, but can
also be used for other checks

 For instance, if we want to make sure our
arguments are positive:

def hypotenuse(a: float, b: float) -> float:
assert a > 0, "a must be positive"
assert b > 0, "b must be positive"
return sgrt(a**2 + b**2)

Module summary

Module summary

« We'll be writing Python in Jupyter

 Imperative programming language: give
your computer a sequence of commands

» Calculation in Python

« Computation =
calculation + repetition + decision-making

« Functions box up behavior
« Programming is mostly fighting bugs

	Slide 1: Warmup (L3)
	Slide 2: Docstrings
	Slide 3: Docstrings
	Slide 4: Docstrings
	Slide 5: Docstrings
	Slide 6: Docstrings
	Slide 7: Comments
	Slide 8: Avoiding bugs: types
	Slide 9: Numeric types
	Slide 10: Numeric types
	Slide 11: Float?
	Slide 12: Numeric types
	Slide 13: Documenting types
	Slide 14: Documenting types
	Slide 15: Documenting types
	Slide 16: int vs float
	Slide 17: Type errors
	Slide 18: Typing errors vs type errors
	Slide 19: Learning to read errors
	Slide 20: Learning to read errors
	Slide 21: In-lecture quizzes
	Slide 22: In-lecture quiz (L3)
	Slide 23: In-lecture quiz (L3)
	Slide 24: Testing
	Slide 25: Testing
	Slide 26: Assertions
	Slide 27: Assertions
	Slide 28: Assertions
	Slide 29: Assertions
	Slide 30: Assertions
	Slide 31: Testing with floats
	Slide 32: Imprecise numbers, imprecise tests
	Slide 33: Imprecise numbers, imprecise tests
	Slide 34: Imprecise numbers, imprecise tests
	Slide 35: Code style
	Slide 36: Code style
	Slide 37: Other assertions
	Slide 38: Module summary
	Slide 39: Module summary

