
Warmup (L4)
• Write a function
checkWithin(result, expected, tolerance, name)

that generalizes our assert-based
tolerance checking

• (That is, it asserts that result is within the
tolerance of expected, with name as the
name/message for the assertion)

• Note: Don’t use this in your submissions;
MarkUs won’t detect the separate tests ☺

CS114
Module 2: Making decisions

Making decisions
CS114 M2

Assertions

• Remember “==” and “<” from our
assertions?

• What do they actually do?

print(hypotenuse(4, 5) < 7)

True

Conditionals

• hypotenuse(4, 5) < 7 is simply a
fact: it is true

• We can conditionalize code based on facts

• That is, rather than just asserting that
something is true as a test, we check if it’s
true, then choose what to do next

Why?

• Remember:
computation =

calculation +
repetition +
decision making

• We did calculation in Module 1

• Conditions will give us decision making

def pos(x: float) -> float:

"""

If x is not zero, return the absolute value of x.
Otherwise, return 1.

"""

if x < 0:

return -x

elif x == 0:

return 1

else:

return x

assert pos(42) == 42, "Absolute value of positive is positive."

assert pos(-42) == 42, "Absolute value of negative is positive."

assert pos(0) == 1, "Special case pos(0) is 1."

Decision making

This code only runs if x < 0

This code only runs if x == 0
(elif means “else if”)

This code only runs if x > 0
That condition is implicit: it

only runs if neither previous
case matched.

def pos(x: float) -> float:

 """

 If x is not zero, return the absolute value of x.
 Otherwise, return 1.

 """

 if x < 0:

 return -x

 elif x == 0:

 return 1

 else:

 return x

assert pos(42) == 42, "Absolute value of positive is positive."

assert pos(-42) == 42, "Absolute value of negative is positive."

assert pos(0) == 1, "Special case pos(0) is 1."

Decision making

Indenting again to show what
happens conditionally and

what doesn’t

Decision making
def multiOp(x: float, y: float, op: int) -> float:

 """

 Return “x op y”, where the operation is given as
 a code in op:
 0: addition
 1: subtraction
 2: multiplication
 """

 assert op >= 0, "No negative operation codes"
 assert op <= 2, "Operation codes go up to 4"

 if op == 0:
 return x + y
 if op == 1:
 return x – y
 return x * y

assert multiOp(1, 1, 0) == 2, "Simple addition"
assert multiOp(4, -3, 2) == -12, "Simple multiplication"
… more tests …

Decision making
def multiOp(x: float, y: float, op: int) -> float:

 """

 Return “x op y”, where the operation is given as
 a code in op:
 0: addition
 1: subtraction
 2: multiplication
 """

 assert op >= 0, "No negative operation codes"
 assert op <= 2, "Operation codes go up to 4"

 if op == 0:
 return x + y
 if op == 1:
 return x – y
 return x * y

assert multiOp(1, 1, 0) == 2, "Simple addition"
assert multiOp(4, -3, 2) == -12, "Simple multiplication"
… more tests …

We write <= for ≤ and >= for ≥

Decision making
def multiOp(x: float, y: float, op: int) -> float:

 """

 Return “x op y”, where the operation is given as
 a code in op:
 0: addition
 1: subtraction
 2: multiplication
 """

 assert op >= 0, "No negative operation codes"
 assert op <= 2, "Operation codes go up to 4"

 if op == 0:
 return x + y
 if op == 1:
 return x – y
 return x * y

assert multiOp(1, 1, 0) == 2, "Simple addition"
assert multiOp(4, -3, 2) == -12, "Simple multiplication"
… more tests …

else/elif are not required

Still imperative

• Anything indented under if is executed
conditionally

• Anything after if (unindented) is
executed unconditionally. It’s simply run in
order.

• Except for early return

• Let’s add some prints to our multiOp
function in Jupyter to understand what is
and isn’t run

Decision making
def multiOp(x: float, y: float, op: int) -> float:

 """

 Return “x op y”, where the operation is given as
 a code in op:
 0: addition
 1: subtraction
 2: multiplication
 """

 assert op >= 0, "No negative operation codes"
 assert op <= 2, "Operation codes go up to 4"

 if op == 0:
 return x + y
 if op == 1:
 return x – y
 return x * y

assert multiOp(1, 1, 0) == 2, "Simple addition"
assert multiOp(4, -3, 2) == -12, "Simple multiplication"
… more tests …

Variable naming aside

• I told you to use descriptive names, but I
just named my parameters “x” and “y”

• Names are for what the variable means to
the function, not to whoever calls the
function

• In the case of multiOp, x means nothing
to us, so x is as good as any other name

• op gets a real name because it means
something to multiOp!

In-lecture quiz (L4)
• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q1: Which of these Python function definitions is valid?

A. def return(x: int) -> int:
 return x

B. def roundBadly(x: float) -> int:
 if x < 0:
 return int(x) – 1
 return int(x)

C. def greater(x: float, y: float) -> float:
 if x > y:
 return x
 return y

D. void iGotLost(const std::string &user) {
 cout << "Aren’t you glad you’re learning "
 "Python instead of C++?"
 << std::endl;
}

In-lecture quiz (L4)
• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q2: What will this code print?
def f(x: int) -> None:
 if x > 5:
 print("Big")
 print("Small")
f(42)

A. Big

B. Small

C. Big
Small

D. Nothing

Boolean logic
CS114 M2

Booleans

• True and False are values

• Although it’s weird, you can, e.g., store it
in a variable:
x = hypotenuse(4, 5) < 7

• Just as True is a value, so is False:

print(hypotenuse(4, 5) > 7)

False

Booleans

• These are called boolean values, named
for logician George Boole

• For the type checker, “bool”

• Math with booleans is called boolean logic

• We get booleans with our comparators:

==, !=, <, <=, >, >=

!= for ≠ (not equal to)

Multiple conditions

• You can put ifs in ifs

if op < 2:
 if op == 0:
 return x + y
 else:
 return x - y
else:
 return x * y

• Let’s add some prints to understand this

Multiple conditions

• There are also operators to combine
conditions:

if op >= 0 and op <= 2:

 # … do it …

else: # op out of range

 return -1

• and for both, or for either

Multiple conditions

• There are also operators to combine
conditions:

if op >= 0 and op <= 2:

 # … do it …

else: # op out of range

 return -1

• and for both, or for either

It’s sometimes useful to
comment an else to
make it clear when it

happens.

Nesting vs. combining

• When you put an if inside of another if,
that’s called nesting conditionals

• Sometimes it’s unavoidable (or would be
ugly to avoid)

• In particular, when you need to nest a condition
and do something else

• When you can avoid it, you usually should. It
results in pyramids of doom (code so nested
that it gets indented so far that it’s annoying
to read)

• But use common sense!

A note on or

• In common use, “or” can be ambiguous

• If CS114 is my favorite class or I fail it, I’ll
remember it well.

• What if CS114 is your favorite class and you
fail it?

• In CS, “or” always means “and/or”, so,
e.g., “1 == 1 or 2 == 2” is true.

Complex combos

• You can also invert a condition with not,
and group things with parentheses just
like in numerical math

if not (op < 0 or op > 2):

 # … do it …

else: # op out of range

 return -1

Mind your precedence

• BEDMAS is now BEDMASCN&O
 (pronounced bed-masc-nando)

• Brackets/parentheses, exponents, division and
multiplication, addition and subtraction, …

• Conditionals (==, !=, <, <=, >, >=)

• not

• and

• or

Mind your precedence

• Confused?

• When in doubt, just use parentheses to
make it clear

• Don’t double up (e.g., ((a<b))).
Otherwise, it’s never bad style.

• (Using parentheses around assert isn’t bad
style, it’s just incorrect.)

Booleans are values

• Here’s a new version of multiOp:

def multiOp(x: float, y: float, op: int) -> float:

 """

 …
 """

 if opInRange(op):
 if op == 0:
 return x + y
 elif op == 1:
 return x – y
 return x * y
 else:
 return -1

• Let’s write opInRange to work with it.

Booleans are values

• Here’s a new version of multiOp:

def multiOp(x: float, y: float, op: int) -> float:

 """

 …
 """

 if opInRange(op):
 if op == 0:
 return x + y
 elif op == 1:
 return x – y
 return x * y
 else:
 return -1

• Let’s write opInRange to work with it.

There’s no comparison here (at
least, not directly!). We got a bool
because that’s what opInRange

returned!

	L4
	Slide 1: Warmup (L4)
	Slide 2: CS114
	Slide 3: Making decisions
	Slide 4: Assertions
	Slide 5: Conditionals
	Slide 6: Why?
	Slide 7: Decision making
	Slide 8: Decision making
	Slide 9: Decision making
	Slide 10: Decision making
	Slide 11: Decision making
	Slide 15: Still imperative
	Slide 16: Decision making
	Slide 17: Variable naming aside
	Slide 18: In-lecture quiz (L4)
	Slide 19: In-lecture quiz (L4)
	Slide 20: Boolean logic
	Slide 21: Booleans
	Slide 22: Booleans
	Slide 23: Multiple conditions
	Slide 25: Multiple conditions
	Slide 26: Multiple conditions
	Slide 28: Nesting vs. combining
	Slide 29: A note on or
	Slide 30: Complex combos
	Slide 32: Mind your precedence
	Slide 33: Mind your precedence
	Slide 34: Booleans are values
	Slide 35: Booleans are values

