Warmup (L4)

 Write a function

checkWithin (result, expected, tolerance, name)

that generalizes our assert-based
tolerance checking

e (Thatis, it asserts that result is within the
tolerance Of expected, with name as the
name/message for the assertion)

« Note: Don’t use this in your submissions;
MarkUs won't detect the separate tests ©

CS114

Module 2: Making decisions

Making decisions

Assertions

e Remember “==" and “<" from our
assertions?

« What do they actually do?

print (hypotenuse (4, 5) < 7)
True

Conditionals

* hypotenuse (4, 5) < 7 issimply a
fact:itis true

« We can conditionalize code based on facts

« That is, rather than just asserting that
something is true as a test, we check if it's
true, then choose what to do next

Why?

« Remember:
computation =
calculation +
repetition +
decision making

« We did calculation in Module 1
 Conditions will give us decision making

Decision making

def pos(x: float) -> float:

mwiww

If x 1s not zero, return the absolute value of x.
Otherwise, return 1.

mwiiw

This code only runs if x <0

if x < 0O:

return —x

This code only runs if x ==

elif x == (elif means “else if")

return 1
else:

ceturn « This code .o.nly runs |f.x.> O

\ That condition is implicit: it

assert pos(42) == 42, only runs if neither previous
assert pos (- 42’ 4 case matched.

assert pOS (O) == 1’ "s.lr “““““““““ rvu \v’ e bt als o

Decision making

def pos(x: float) -> float:

LA A

If x 1s not zero, return the absolute value of x.
Otherwise, return 1.

Indenting again to show what
happens conditionally and
elif x : what doesn’t

mwiiw

if x < 0O:

return x

assert pPos (42) == 42, r"aAbsolute value of positive is positive."
assert pos(-42) == 42, r"Absolute value of negative is positive."
assert pos(0) == 1, "Special case pos(0) is 1."

Decision making

def multiOp(x: float, y: float, op: int) -> float:

LA A

Return “x op y”, where the operation is given as
a code in op:

0: addition

1: subtraction

2: multiplication

assert op >= 0, "No negative operation codes"
assert op <= 2, "Operation codes go up to 4"

if op == 0:
return x + y
if op ==
return x -y

return x * vy

assert multiOp(1l, 1, 0) == 2, "Simple addition"
assert multiOp (4, -3, 2) == -12, "Simple multiplication"
.. more tests ..

Decision making

def multiOp(x: float, y: float, op: int) -> float:

LA A

Return “x op y”, where the operation is given as
a code in op:

0: addition

1: subtraction

2: multiplication

assert op >= 0, "No negative operation codes"
assert op <= 2, "Operation codes go up to 4"

if op == 0:
if o;eilrn;x t v 'We write <= for < and >= for >
return x - y

return x * vy

assert multiOp(1l, 1, 0) == 2, "Simple addition"
assert multiOp (4, -3, 2) == -12, "Simple multiplication"
.. more tests ..

Decision making

def multiOp(x: float, y: float, op: int) -> float:

LA A

Return “x op y”, where the operation is given as
a code in op:

0: addition

1: subtraction

2: multiplication

assert op >= 0, "No negative operation codes"
assert op <= 2, "Operation codes go up to 4"

if op == 0: :
(¢ AREEER i else/elif are Not required

return x -y
return x * vy

assert multiOp(1l, 1, 0) == 2, "Simple addition"
assert multiOp (4, -3, 2) == -12, "Simple multiplication"
.. more tests ..

Still imperative

« Anything indented under if is executed
conditionally

« Anything after i £ (unindented) is
executed unconditionally. It's simply run in
order.

« Except for early return

 Let's add some printsto our multiOp
function in Jupyter to understand what is
and isn't run

Decision making

def multiOp(x: float, y: float, op: int) -> float:

LA A

Return “x op y”, where the operation is given as
a code in op:

0: addition

1: subtraction

2: multiplication

assert op >= 0, "No negative operation codes"
assert op <= 2, "Operation codes go up to 4"

if op == 0:
return x + y
if op ==
return x -y

return x * vy

assert multiOp(1l, 1, 0) == 2, "Simple addition"
assert multiOp (4, -3, 2) == -12, "Simple multiplication"
.. more tests ..

Variable naming aside

- | told you to use descriptive names, but |
just named my parameters “x” and “y"

« Names are for what the variable means to
the function, not to whoever calls the
function

* In the case of multiOp, x means nothing
to us, so x is as good as any other name

* op gets a real name because it means
something to multiop!

In-lecture quiz (L4)

« https://student.cs.uwaterloo.ca/~cs114/quiz/
« Q1: Which of these Python function definitions is valid?

A. def return(x: int) -> int:
return x

B. def roundBadly(x: float) -> int:
if x < 0:
return int(x) - 1
return int (x)

C. def greater(x: float, y: float) -> float:
if x > y:
return x
return y

D. wvoid iGotLost (const std::string &user) {
cout << "Aren’'t you glad you’re learning "
"Python instead of C++?"
<< std::endl;

In-lecture quiz (L4)
« https://student.cs.uwaterloo.ca/~cs114/quiz/

« Q2: What will this code print?
def f(x: int) -> None:
if x > 5:
print ("Big")
print ("Small™)
£f(42)

A. Big
B. Small

C. Big
Small

D. Nothing

Boolean logic

Booleans

e True and False are values

 Although it's weird, you can, e.g., store it
in a variable:
X = hypotenuse (4, 5) < 7

 Just as True is avalue, sois False:

print (hypotenuse (4, 5) > 7)
False

Booleans

 These are called boolean values, named
for logician George Boole

 For the type checker, “bool”
« Math with booleans is called boolean logic
« We get booleans with our comparators:

—= !:r <y, <=y 02 2=

I=for # (not equal to)

Multiple conditions

* You can putifsin ifs

if op < 2:
if op == O0:
return x + y
else:
return x - vy
else:

return x * y

* Let's add some prints to understand this

Multiple conditions

» There are also operators to combine
conditions:

if op >= 0 and op <= 2:
.. do it ..

else: # op out of range
return -1

* and for both, or for either

Multiple conditions

» There are also operators to combine
conditions:

It's sometimes useful to
comment an else to

make it clear when it
happens.

i1f op >= 0 and op <
.. do it .. L

else: # op out of r
return -1

* and for both, or for either

Nesting vs. combining

« When you put an if inside of another if,
that's called nesting conditionals

« Sometimes it's unavoidable (or would be
ugly to avoid)

* In particular, when you need to nest a condition
and do something else

« When you can avoid it, you usually should. It
results in pyramids of doom (code so nested
that it gets indented so far that it's annoying
to read)

e But use common sense!

A note on or

* |[n common use, “or” can be ambiguous

 If CS114 is my favorite class or | fail it, I'l
remember it well.

« What if CS114 is your favorite class and you
fail it?

* In CS, “or” always means “and/or", so,
e.g,”l == 1 or 2 == 2"istrue.

Complex combos

* You can also invert a condition with not,

and group things with parentheses just
like in numerical math

1f not (op < 0 or op > 2):
.. do it ..

else: # op out of range
return -1

Mind your precedence

 BEDMAS is now BEDMASCN&O

(pronounced bed-masc-nando)

 Brackets/parentheses, exponents, division and
multiplication, addition and subtraction, ...

e Conditionals (==, !'=, <, <=, >, >=)
* not
* and

* or

Mind your precedence

 Confused?

* When in doubt, just use parentheses to
make it clear

« Don't double up (e.g., ((a<b))).
Otherwise, it's never bad style.

 (Using parentheses around assert isn't bad
style, it's just incorrect.)

Booleans are values

« Here's a new version of multioOp:

def multiOp(x: float, y: float, op: 1int) -> float:

wiww

if opInRange(op)

if op == 0O:
return x + vy
elif op == 1:
return x — y
return x * vy
else:

return -1

« Let's write opInRange to work with it.

Booleans are values

« Here's a new version of multioOp:

def multiOp(x: float, y: float, op: 1int) -> float:

wiww

if opInRange (op) :

if == 0:
elif op . There’s no comparison here (at
least, not directly!). We got a bool
return x * y ,
else: because that's what opInRange
return -l returned!

« Let's write opInRange to work with it.

	L4
	Slide 1: Warmup (L4)
	Slide 2: CS114
	Slide 3: Making decisions
	Slide 4: Assertions
	Slide 5: Conditionals
	Slide 6: Why?
	Slide 7: Decision making
	Slide 8: Decision making
	Slide 9: Decision making
	Slide 10: Decision making
	Slide 11: Decision making
	Slide 15: Still imperative
	Slide 16: Decision making
	Slide 17: Variable naming aside
	Slide 18: In-lecture quiz (L4)
	Slide 19: In-lecture quiz (L4)
	Slide 20: Boolean logic
	Slide 21: Booleans
	Slide 22: Booleans
	Slide 23: Multiple conditions
	Slide 25: Multiple conditions
	Slide 26: Multiple conditions
	Slide 28: Nesting vs. combining
	Slide 29: A note on or
	Slide 30: Complex combos
	Slide 32: Mind your precedence
	Slide 33: Mind your precedence
	Slide 34: Booleans are values
	Slide 35: Booleans are values

