
Warmup (L5)

Write a function with arguments (a, b,
c, d), all floats, that returns the greatest
value among its four arguments.

What does this look like with nested ifs?
With and/or? Is there a cleaner way?

(Note: there’s a built-in max function, but
don’t use that; that’s too easy!)

Booleans are values

• Here’s a new version of multiOp:

def multiOp(x: float, y: float, op: int) -> float:

"""

…
"""

if opInRange(op):
if op == 0:

return x + y
elif op == 1:

return x – y
return x * y

else:
return -1

• Let’s write opInRange to work with it.

Booleans are values

• Here’s a new version of multiOp:

def multiOp(x: float, y: float, op: int) -> float:

"""

…
"""

if opInRange(op):
if op == 0:

return x + y
elif op == 1:

return x – y
return x * y

else:
return -1

• Let’s write opInRange to work with it.

There’s no comparison here (at
least, not directly!). We got a bool
because that’s what opInRange

returned!

Booleans are values

• Here’s a new version of multiOp:

def multiOp(x: float, y: float, op: int) -> float:

 """

 …
 """

 if opInRange(op):
 if op == 0:
 return x + y
 elif op == 1:
 return x – y
 return x * y
 else:
 return -1

• Let’s write opInRange to work with it.

Making the op == 2 condition
totally implicit is usually poor style,

because it’s unclear. I did it here
just to show an elif without an

else.

The power of abstraction
CS114 M2

Nonobvious conditions

• Let’s write a function isEven to check if
an integer is even.

• None of our comparators look like “is
even” or “divisible by”…

• New operator! %

• Remainder after division, e.g., 5%2==1

• Called “modulo”

Modulo and quotient

• In math, remainder after division is
usually paired with quotient to keep
division in integers

• We can do the same to keep division in
ints.

• Quotient is // (two slashes)

Modulo

• Wait, remainder after division still isn’t “is
even” or “divisible by”…

• A number is even if it’s divisible by 2…

• A number is divisible by y if the remainder
after division by y is 0…

• So, we can use ==: x%y==0

isEven

• With modulo in mind, let’s write our
isEven function.

isEven

• With modulo in mind, let’s write our
isEven function.

def isEven(v: int) -> bool:

 """

 Returns True if v is even,

 False otherwise.

 """

 return v%2==0

Using a function call as a condition

• isEven returns a bool, so that it can be
used as a condition

• Let’s use isEven to tell the user whether a
number is even

Using a function call as a condition

• isEven returns a bool, so that it can be
used as a condition

• Let’s use isEven to tell the user whether a
number is even

def printEvenness(v: int) -> None:

 if isEven(v):

 print(v, "is even")

 else:

 print(v, "is odd")

Using a function call as a condition

def printEvenness(v: int) -> None:

 if isEven(v):

 print(v, "is even")

 else:

 print(v, "is odd")

On slides I often won’t show the
docstring, just to make things shorter.

You should still write docstrings for every
function. Do as I say, not as I do!

Using a function call as a condition

def printEvenness(v: int) -> None:

 if isEven(v):

 print(v, "is even")

 else:

 print(v, "is odd")

Remember, if a function doesn’t explicitly return, it
returns None. You can use None as your return

type to indicate that you meant to do that.

Using a function call as a condition

def printEvenness(v: int) -> None:

 if isEven(v):

 print(v, "is even")

 else:

 print(v, "is odd")

There’s no comparison here, so where’d our
boolean come from? A boolean is a value! isEven

returned it, and we used that return directly.

Using a function call as a condition

def printEvenness(v: int) -> None:

 if isEven(v) == True:

 print(v, "is even")

 else:

 print(v, "is odd")

This would also work, but it’s considered poor
style, because == True doesn’t do anything

useful here.

The hat trick

• We were printing mostly the same string
in either case

• Why not use a function to make the
string, then print the string it returns?

• This also means we could use it for other
purposes in the future, not just printing

The hat trick

• Let’s make a function to stringify evenness:

The hat trick

• Let’s make a function to stringify evenness:

def describeEvenness(v: int) -> str:

 if isEven(v):

 return "even"

 else:

 return "odd"

def printEvenness(v: int) -> None:

 print(v, "is", describeEvenness(v))

The hat trick

• This is getting complicated! In Jupyter,
let’s add some prints to trace through
exactly what’s happening

In-lecture quiz (L5)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: What will this program print?
def checkRange(x: int) -> None:
 if x < 10:
 print("in range")
 elif x < 5:
 print("too small")
 elif x > 10:
 print("too big")
checkRange(1)

A. in range

B. too small

C. too big

D. Nothing

In-lecture quiz (L5)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What will this program print?
def checkRange(x: int) -> None:
 if x < 10:
 print("in range")
 elif x < 5:
 print("too small")
 elif x > 10:
 print("too big")
checkRange(10)

A. in range

B. too small

C. too big

D. Nothing

The power of abstraction

(Please excuse the overt grandiosity of this analogy)

Humans achieved complex societies
through specialization: When some people
specialize as farmers, that frees up time
and energy for others to specialize as, e.g.,
metalworkers. The metalworkers free up
time and energy so others can specialize in,
say, construction.

The power of abstraction

• Computer programs achieve similar
power through abstraction

• Once you (or somebody else!) has written
a function that does what you need, that
frees you up from reinventing it

• As the abstractions keep building on
other abstractions, our power to write
specialized and more sophisticated
programs increases

The power of abstraction

In our isEven example (in which every step is

admittedly rather simple), we freed
describeEvenness from the task of
determining evenness, and
printEvenness from describing evenness.

The problem of abstraction

• There is a problem: what if isEven had
been incorrect?

• If farmers forget how to farm, the rest of
society collapses; if isEven can’t even,
everything else produces incorrect results

• Use abstractions, but test abstractions!
Bugs happen when abstractions break!

More examples

• Let’s do some examples in Jupyter. We’ll write tests
first, then fill in the function.

We will categorize all numbers into one of four (rather
silly) categories:

• Even integer ("even"),

• odd integer ("odd"),

• negative non-integer ("neg"),

• positive non-integer ("pos").

def numberCategory(v: float) -> str:

More examples

• We wrote numberCategory with nested
conditions. Let’s try to write it without
nested conditions.

• Ew! Ugly! If avoiding nesting requires
rewriting conditions, nesting is preferable!

On testing
• When I introduced asserts, I suggested writing tests first.

This is called black-box testing.

black box
noun
2: A device which performs intricate functions but whose
internal mechanism may not readily be inspected or
understood; (hence) any component of a system specified
only in terms of the relationship between inputs and
outputs. Also figurative.
 (— Oxford English Dictionary)

• Knowing how the code works can bias your tests. When
writing your own tests, black-box tests should be written
before the code.

• White-box tests are written with knowledge of the code.
Write these too!

On testing

• Of course, practically speaking, you
should have some sense of how your
code will work before you write it

• You can’t black-box your own mind

• Don’t overthink it. Just test!

• Black-box testing is good for avoiding
biases; white-box testing is good for
catching corner cases specific to the
implementation.

Other comparisons
CS114 M2

Other comparisons

• Our comparators are for anything, not just
numbers

• == and != can be used to compare strings, or
even bools

• "foo" == "foo"

• "foo" != "bar"

• False == False

• 5 != "5"

• True == 1 ???
This is a weird CS thing, you can ignore it ☺

Other comparisons

• You can also use <, <=, >, and >= with strings,
and it mostly compares them how they
would be put in a dictionary

• "aardvark" < "zebra"

• "Richards" > "Gregor"

• But not quite…

• "Z" < "a" # Upper-case letters are
 # all “less than” lower-

 # case letters

Final examples

• Some more examples to try:

• A safe division function that avoids dividing
by zero (look up math.inf)

• Python doesn’t provide xor (exclusive or), so
we’ll make our own

• xor3 too!

• Three-party majority vote

Module summary
CS114 M2

Module summary

• Use if, elif, else to make decisions

• Decisions let you run things conditionally

• Early returns can confuse conditions

• Decisions are booleans: True or False

• Combine booleans with and, or, not

• Booleans are values and can be passed
around

• Get accustomed to how conditional code
works!

	L4
	Slide 1: Warmup (L5)
	Slide 2: Booleans are values
	Slide 3: Booleans are values
	Slide 4: Booleans are values

	L5
	Slide 8: The power of abstraction
	Slide 9: Nonobvious conditions
	Slide 10: Modulo and quotient
	Slide 11: Modulo
	Slide 12: isEven
	Slide 13: isEven
	Slide 14: Using a function call as a condition
	Slide 15: Using a function call as a condition
	Slide 16: Using a function call as a condition
	Slide 17: Using a function call as a condition
	Slide 18: Using a function call as a condition
	Slide 19: Using a function call as a condition
	Slide 20: The hat trick
	Slide 21: The hat trick
	Slide 22: The hat trick
	Slide 23: The hat trick
	Slide 24: In-lecture quiz (L5)
	Slide 25: In-lecture quiz (L5)
	Slide 26: The power of abstraction
	Slide 27: The power of abstraction
	Slide 28: The power of abstraction
	Slide 29: The problem of abstraction
	Slide 32: More examples
	Slide 33: More examples
	Slide 34: On testing
	Slide 35: On testing
	Slide 37: Other comparisons
	Slide 38: Other comparisons
	Slide 39: Other comparisons
	Slide 40: Final examples
	Slide 41: Module summary
	Slide 42: Module summary

