
Warmup (L6)

• Write a function validTrangle with
arguments (a, b, c), for the side
lengths of a triangle, that returns True if
the three side lengths can form a triangle,
or False otherwise.

• Triangle reminder: The length of every side
of a triangle must be strictly less than the
sum of the lengths of the other two sides.

CS114
Module 3: Loops

Repetition
CS114 M3

Repetition

• We’re nearly doing real computing:

• computation = calculation + repetition + decision-making

• Repetition of calculations is necessary for
computation!

Repetition
• Why did we do decision-making first?

• An old joke: A computer programmer
buys a new bottle of shampoo. After
several hours in the shower, his wife asks
what’s wrong. “The bottle says lather,
rinse, repeat!”

• You have to be able to decide when to
stop repeating, so decision-making comes
first!

Repetition for laziness

• We will eventually need repetition to do
interesting computing

• Let’s start simpler: if we want to print a
countdown from, say, 100, it sure would
be annoying to write 100 prints!

The countdown

c = 100

while c >= 1:

print(c)

c = c - 1

print("Ignition")

The countdown

c = 100

while c >= 1:

print(c)

c = c - 1

print("Ignition")

while: Like if, but instead of “do this if this condition
is true”, “do this while this condition is true”. I.e., do an
if, then when you’re done, come back and check

again, repeatedly, until the condition is false.

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

Remember that >= is ≥

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

This happened before the repetition, so c was 100 the
first time we printed

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

We print every time we repeat

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

We reduce c by 1 every time we repeat, so the next
time we’ll print a lower number

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

This is unindented, so it’s after (outside) the repetition

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition at", c)

If we printed c here, we’d see that it’s now 0

The countdown

c = 100

while c >= 1:

 print(c)

 c = c - 1

print("Ignition")

Once c was 0, this condition stopped being true, so
we didn’t repeat this again

The while loop

• New syntax: this is a while loop

• It repeats (loops) while a condition is true

• The most basic and powerful form of
loop: we’ll see other forms, but we can
mimic any of them with a while loop

• Syntax is identical to if, except

• while instead of if, and

• there’s no equivalent of elif or else

Infinite loops!

• A while loop will continue looping so long
as its condition is true

• It’s up to you to make sure its condition
eventually becomes false!

• Infinite loops are usually undesirable…

• … but they’re often necessary to make
something interactive. We won’t be doing
that much in this course 

Keeping track of state

• Imperative language: Commands are run
in the given order

• Add loops: Commands are run repeatedly
in the given order

• Consequence: We can no longer simply
say “at this location in code, c has this
value” (the location is repeated, and c has
different values!)

Keeping track of state

• This is another dimension where
surprising behavior can arise (and thus
bugs)

• The winding path you take through code
is called your thread of execution

• print is your friend!

• When a program is done, its printout is a
record of what happened

Early return

• Remember how return can end a function
early?

• That’s even true in a loop!

def firstSquareGreaterThan(x: int) -> int:

 r = x + 1

 while True:

 sr = sqrt(r)

 if int(sr) == sr:

 return r

 r = r + 1

In-lecture quiz (L6)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: What will this code print?
x = 5

while x != 0:

 print(x)

 x = x - 2

A. 5, 4, 3, 2, 1, 0

B. 5, 3, 1

C. 5, 3, 1, -1

D. 5, 4, 3, 2, 1

E. Endless output (it prints forever)

In-lecture quiz (L6)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What will this code print?
x = 5

while x > 0:

 print(x)

 x = x - 2

A. 5, 4, 3, 2, 1, 0

B. 5, 3, 1

C. 5, 3, 1, -1

D. 5, 4, 3, 2, 1

E. Endless output (it prints forever)

Computing with loops
CS114 M3

Computing something

• Let’s use loops for something more
useful:

• factorial (n! = n * (n-1) * (n-2) … * 1)

• sumTo (sumTo(n) = n + (n-1) + (n-2) … + 1)

• Let’s add prints to factorial to
understand how the values change at
different steps around the loop

Types aside

• Let’s run factorial with a large int and
the same float

• In Python, ints have unlimited range, but
floats don’t!

• floats are still good enough for most
uses; this is just a distinction to bear in
mind

No need for counting

• So far we’ve just been counting up or
down

• Your conditions and steps can be
anything

• Let’s write a function printFloat to
print a floating-point value, only calling
print on ints

• Yes, I know that print will do this, but
print isn’t magic, it’s just code!

No need for counting

def printFloat(f: float) -> None:

 i = int(f)

 print(i, ".")

 rem = f - i

 while rem > 0:

 rem = rem * 10

 i = int(rem)

 print(i)

 rem = rem – i

Computation!

• Let’s do something that really feels like
computing: factorization

• We’ll write a function factorize that
prints the factors of a whole number

• Then, a function gcd to compute the
greatest common divisor of two numbers

Computation!

def factorize(n: int) -> None:

 assert n > 0, "Only positive

 integers have

 factors"

 f = 1

 while f <= n:

 if n%f == 0:

 print(f)

 f = f + 1

Computation!

def gcd(a: int, b: int) -> int:

 assert a > 0 and b > 0, "Only positive

 integers have

 factors"

 gcd = 1

 candidate = 2

 while candidate <= a and candidate <= b:

 if a%candidate == 0 and b%candidate == 0:

 gcd = candidate

 candidate = candidate + 1

 return gcd

Computation!

Note: The gcd we just wrote could have
been done with an early return, and
probably more clearly, by counting down
instead of up. I’m just trying to show
interesting loops here, not necessarily the
best way to do it ☺

Loops within loops

• You can put anything¹ in your loops that
you could put outside your loops

• You can even put loops in your loops!

• Let’s complete our factorization
computations by performing prime
factorization

¹ You can even put function definitions and imports in loops, but this is usually
considered very confusing.

Loops within loops

def primeFactors(n: int) -> None:
 assert n > 0, "Only positive integers
 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 print(f)

 least = f

 n = n // f

Loops within loops

def primeFactors(n: int) -> None:
 assert n > 0, "Only positive integers
 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 print(f)

 least = f

 n = n // f

Sometimes the condition is more about when you
want the loop to stop than when you want the loop to

go. Here, we want to stop at the first factor.

Aside on primes

• Where did I check that the factor was
prime?

• Because I keep dividing out the primes I
find, the least factor I find will always be a
prime: every smaller value has already
been divided out

Less obvious loops
• Let’s write our own terrible version of
math.sqrt

• We’ll do this by approximating, then
narrowing in until we find the value we want

• The math:

• 𝑟2 = 𝑛, so 𝑟 =
𝑛

𝑟

• Guess an 𝑟.

• If it’s too small,
𝑛

𝑟
 is too big and vice-versa

• In either case, choose a value between 𝑟 and
𝑛

𝑟

until we’re close enough (within tolerance)

Less obvious loops

def sqrtButTerrible(n: float) -> float:

 assert n >= 0, "Imaginary numbers

 unsupported"

 g = n/2

 while abs(g*g - n) > 0.0001:

 # print(g)

 g = (g + n/g) / 2

 return g

	L6
	Slide 1: Warmup (L6)
	Slide 2: CS114
	Slide 3: Repetition
	Slide 4: Repetition
	Slide 5: Repetition
	Slide 6: Repetition for laziness
	Slide 7: The countdown
	Slide 8: The countdown
	Slide 9: The countdown
	Slide 10: The countdown
	Slide 11: The countdown
	Slide 12: The countdown
	Slide 13: The countdown
	Slide 14: The countdown
	Slide 15: The countdown
	Slide 16: The while loop
	Slide 17: Infinite loops!
	Slide 18: Keeping track of state
	Slide 19: Keeping track of state
	Slide 20: Early return
	Slide 21: In-lecture quiz (L6)
	Slide 22: In-lecture quiz (L6)
	Slide 23: Computing with loops
	Slide 24: Computing something
	Slide 25: Types aside
	Slide 26: No need for counting
	Slide 27: No need for counting
	Slide 28: Computation!
	Slide 29: Computation!
	Slide 30: Computation!
	Slide 31: Computation!
	Slide 32: Loops within loops
	Slide 33: Loops within loops
	Slide 34: Loops within loops
	Slide 35: Aside on primes

	L7
	Slide 37: Less obvious loops
	Slide 38: Less obvious loops

