Warmup (L6)

« Write a function validTrangle with
arguments (a, b, c),fortheside
lengths of a triangle, that returns True if

the three side lengths can form a triangle,
Or False otherwise.

 Triangle reminder: The length of every side
of a triangle must be strictly less than the
sum of the lengths of the other two sides.

CS114

Module 3: Loops

Repetition

CS114 M3

Repetition

» We're nearly doing real computing:
« computation = caleulation + repetition + decision-making

 Repetition of calculations is necessary for
computation!

Repetition
« Why did we do decision-making first?
« An old joke: A computer programmer

buys a new bottle of shampoo. After
several hours in the shower, his wife asks

what's wrong. “The bottle says lather,
rinse, repeat!”

* You have to be able to decide when to
stop repeating, so decision-making comes

first!

Repetition for laziness

« We will eventually need repetition to do
Interesting computing

o Let's start simpler: if we wantto print a

countdown from, say, 100, it sure would
be annoying to write 100 prints!

The countdown

c = 100

while ¢ >= 1:
print (c)
c = c¢c - 1

print ("Ignition")

The countdown

while:; Like i £, but instead of “do this if this condition

is true”, “do this while this condition is true”. l.e., do an
if, then when you're done, come back and check

again, repeatedly, until the condition is false.

while €<= 71.

print (c)
c = ¢ - 1
print ("Ignition")

The countdown

Remember that >=is >

c = 100

while ¢ >= 1:
print (c)
c = c¢c - 1

print ("Ignition")

The countdown

This happened before the repetition, so ¢ was 100 the
first time we printed

c =

while ¢ >= 1:
print (c)
c = c¢c - 1

print ("Ignition")

The countdown

We print every time we repeat

c = 100

while c >=
print (c)
c = c¢c - 1

print ("Ignition")

The countdown

We reduce c by 1 every time we repeat, so the next
time we'll print a lower number

print ("Ignition")

The countdown

This is unindented, so it's after (outside) the repetition

print ("Ignition")

The countdown

If we printed c here, we'd see that it's now 0

c = 100

while ¢ >= 1:
print (c)
c = c¢c - 1

print ("Ignition at", c)

The countdown

Once c was 0, this condition stopped being true, so
we didn't repeat this again

c = 100 /

while ¢ >= 1:
print (c)
c = c -1
print ("Ignition")

The while loop

* New syntax: this is a while loop

* |t repeats (loops) while a condition is true

» The most basic and powerful form of
loop: we'll see other forms, but we can
mimic any of them with a while loop

 Syntax is identical to i £, except
* while instead of i £, and

 there's no equivalent of elif or else

Infinite loops!

* A while loop will continue looping so long
as its condition is true

* |t's up to you to make sure its condition
eventually becomes false!

* Infinite loops are usually undesirable...

- ... but they're often necessary to make
something interactive. We won't be doing
that much in this course ®

Keeping track of state

 Imperative language: Commands are run
in the given order

» Add loops: Commands are run repeatedly
in the given order

« Consequence: We can no longer simply
say “at this location in code, ¢ has this
value” (the location is repeated, and c has

different values!)

Keeping track of state

* This is another dimension where
surprising behavior can arise (and thus
bugs)

» The winding path you take through code
is called your thread of execution

* print is your friend!

« When a program is done, its printout is a
record of what happened

Early return

« Remember how return can end a function
early?

« That's even true in a loop!

def firstSquareGreaterThan(x: 1int) -> 1int:
r = x + 1
while True:
sr = sgrt(r)
i1f int(sr) == sr:
return r
r = r + 1

In-lecture quiz (L6)
* https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q1: What will this code print?

X = 5

A.54,3,2,1,0

B. 5, 3,1

C.531,-1

D.5,4,3,2,1

E. Endless output (it prints forever)

In-lecture quiz (L6)
* https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q2: What will this code print?

x =5
while x > O0:
print (x)
X = X = 2
A. 543,2,1,0
B. 5, 3,1
C. 5, 3,1, -1

D.5,4,3,2,1
E. Endless output (it prints forever)

Computing with loops

Computing something

» Let's use loops for something more
useful:

e factorial(nl=n*MNn-1)*(N-2)...*1)

« sumTo (sumTo(n)=n+(N-1)+(N-2) ...+ 1)

e Let's add prints to factorial to
understand how the values change at
different steps around the loop

Types aside

» Let's run factorial with a large int and
the same float

* In Python, ints have unlimited range, but
floats don't!

« floats are still good enough for most

uses; this is just a distinction to bear in
mind

No need for counting

 So far we've just been counting up or
down

» Your conditions and steps can be
anything
 Let's write a function printFloat to

print a floating-point value, only calling
print ON 1ntSsS

* Yes, | know that print will do this, but
print isn't magic, it's just code!

No need for counting

def printFloat(f: float) —-> None:
1 = 1nt (f)
print (1, ".")
rem = £ - 1
while rem > O:
rem = rem * 10
1 = 1nt (rem)
print (1)
rem = rem — 1

Computation!

» Let's do something that really feels like
computing: factorization

« We'll write a function factorize that
prints the factors of a whole number

» Then, a function gcd to compute the
greatest common divisor of two numbers

Computation!

def factorize(n: int) -> None:
assert n > (0, "Only positive
integers have

factors"
f =1
while £ <= n:
1f n3f ==
print (f)

fr=1f + 1

Computation!

def gcd(a: int, b: int) -> int:
assert a > 0 and b > 0, "Only positive
integers have
factors"

gcd = 1
candidate = 2
while candidate <= a and candidate <= b:
if aScandidate == 0 and b%candidate ==
gcd = candidate
candidate = candidate + 1

return gcd

Computation!

Note: The gcd we just wrote could have
been done with an early return, and
probably more clearly, by counting down
instead of up. I'm just trying to show
interesting loops here, not necessarily the
best way to do it ©

Loops within loops

* You can put anything' in your loops that
you could put outside your loops

 You can even put loops in your loops!

* Let's complete our factorization
computations by performing prime
factorization

TYou can even put function definitions and imports in loops, but this is usually
considered very confusing.

Loops within loops

def primeFactors(n: int) -> None:
assert n > 0, "Only positive integers
have factors"

least = 2
while n > 1:
f = least
while £ < n and n%f != 0O:
f=f + 1
print (f)
least = £
n =n// £

Loops within loops

Sometimes the condition is more about when you
want the loop to stop than when you want the loop to
go. Here, we want to stop at the first factor.

while n > 1:
f = least

while £ < n and nS%f != 0O:
f=f + 1

print (f)

least = £

n=n// £

Aside on primes

« Where did | check that the factor was
prime?

« Because | keep dividing out the primes |
find, the least factor | find will always be a
orime: every smaller value has already
peen divided out

Less obvious loops

e |Let's write our own terrible version of
math.sgrt

» We'll do this by approximating, then
narrowing in until we find the value we want
The math:

2 n
=7’l,SO7"=;

°Tr

Guess anr.

If it's too small, g IS too big and vice-versa

In either case, choose a value between r and %
until we're close enough (within tolerance)

Less obvious loops

def sgrtButTerrible(n: float) -> float:
assert n >= 0, "Imaginary numbers

unsupported"
g = n/2
while abs(g*g - n) > 0.0001:
print(g)

g = (g + n/g) / 2

return g

	L6
	Slide 1: Warmup (L6)
	Slide 2: CS114
	Slide 3: Repetition
	Slide 4: Repetition
	Slide 5: Repetition
	Slide 6: Repetition for laziness
	Slide 7: The countdown
	Slide 8: The countdown
	Slide 9: The countdown
	Slide 10: The countdown
	Slide 11: The countdown
	Slide 12: The countdown
	Slide 13: The countdown
	Slide 14: The countdown
	Slide 15: The countdown
	Slide 16: The while loop
	Slide 17: Infinite loops!
	Slide 18: Keeping track of state
	Slide 19: Keeping track of state
	Slide 20: Early return
	Slide 21: In-lecture quiz (L6)
	Slide 22: In-lecture quiz (L6)
	Slide 23: Computing with loops
	Slide 24: Computing something
	Slide 25: Types aside
	Slide 26: No need for counting
	Slide 27: No need for counting
	Slide 28: Computation!
	Slide 29: Computation!
	Slide 30: Computation!
	Slide 31: Computation!
	Slide 32: Loops within loops
	Slide 33: Loops within loops
	Slide 34: Loops within loops
	Slide 35: Aside on primes

	L7
	Slide 37: Less obvious loops
	Slide 38: Less obvious loops

