Warmup (L/)

Thisis our firstSquareGreaterThan function from
last lecture:

from math import sgrt
def firstSquareGreaterThan(x: int) -> 1int:
r = x + 1
while True:
sr = sqgrt(r)
i1f int(sr) == sr:
return r
r = r + 1

Rewrite it such that it doesn’t use an infinite loop or
early return. That is, rewrite it so that the return is after
the loop.

(If you're familiar with break, don't use it either.)

Less obvious loops

e |Let's write our own terrible version of
math.sgrt

» We'll do this by approximating, then
narrowing in until we find the value we want
The math:

2 n
=7’l,SO7"=;

°Tr

Guess anr.

If it's too small, g IS too big and vice-versa

In either case, choose a value between r and %
until we're close enough (within tolerance)

Less obvious loops

def sgrtButTerrible(n: float) -> float:
assert n >= 0, "Imaginary numbers

unsupported"
g = n/2
while abs(g*g - n) > 0.0001:
print(g)

g = (g + n/g) / 2

return g

for loops

CS114 M3

More obvious loops

* The while loOp is very powerful

« Most of the time we'll just have a
grouping of values, and want to do
something for every value in the group

« We'll see lots of groupings later, but focus
on the simple range grouping for now

Looping over a range of numbers

- Remember our original factorize
function? We just counted up to n.

« Python has a built-in facility to do these
common counting loops that frees us from
writing the obvious steps

def factorize(n: int) -> None:
for £ in range(l, n):
1f n%Sf ==

print (f)

Two new concepts

« Our new factorize introduced two new
concepts: the for loop and ranges

 ranges first: range (1, n) is avalue that
represents a grouping of all the values in
the range from 1 to n

« Lower-bound inclusive (1 is included)
« Upper-bound exclusive (n is excluded)

» Typeis range

Two new concepts

« for is an easier but less powerful kind of
loop than while

* |t only lets us loop over a grouping

* (Such as arange, but we'll see other groupings later)

* |t's easier by saving us from typing the
boilerplate (create a variable, update it
each loop)

« But, it's less powerful because we can
only loop over a grouping

forvSwhile

def factorize(n: int) -> None:

for £ in range (1, n):
if n%f ==

print (f)

def factorize(n: int)

f =1

while f < n:

if nsf ==

f

print (f)
f + 1

—-> None:

forvSwhile

Initial value comes from the range. No need to
explicitly create the variable first.

def factorize(n: int) -> None: def factorize(n: int) -> None:
for f in range (1, Crr——) — |
if n%f == 0: while f < n:
print (f) if n%f == O0:
print (f)

f=1f+1

forvSwhile

Update also comes from the range! No need to
update the variable in the loop.

def factorize(n: int) -> None: def factorize(n: int) -> None:

for £ in range n): f =1

if n%f == 0: while f < n:

print (f) if n%f == O0:
print (f)

f==1f +1

Don't be afraid to while

» for is easy to use and appliesin a lot of
circumstances

« But it is strictly less powerful than while!
Anything you can do with for, you can do
with while, but while can do more!

* |f you find yourself fighting a for loop

that won't do what you want, maybe you
don't want for

All the ranges

* range (from, to)

 From from (inclusive) to to (exclusive)
* range (to)

* From O to to (exclusive)
« Sameas range (0, to)

« (Computer Scientists like to count from 0)
* range (from, to, by)

« From from (inclusive) to t o (exclusive), but skip by
by.E.g.range (0, 4, 2)is{0,2}

* by can be negative to count backwards

range restrictions

* range only counts integers. No floats
allowed!

* |f the arguments don't make sense,
there's no error, but there’s no loop

It's! Stilll Imperative!

What will this print?

def countdown (from: int, to: int) -> None:
for ct in range(from, to, -1):
print (ct)

to = to + 1
print ("Ignition")
countdown (5)

It's! Stilll Imperative!

The range is computed before the loop
runs at all. Updating to does nothing.

def countdown (from: int, to: int) -> None:
for ct in range(from, to, -1):
print (ct)

to = to + 1
print ("Ignition")
countdown (D)

It's! Stilll Imperative!

Perhaps more surprising, updating ct does

nothing either. It steps through the range
with no concern to how ct is changed.

def countdown (from: int, to: int) -> None:
for ct in range(from, to, -1):
ct = ct + 1
print (ct)
print ("Ignition")
countdown (D)

In-lecture quiz (L7)

* https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

* Q1: How many times does this print “x"?
for 1 1in range(l, 4):
while 1 < 4:
print ("x")
1 =1 + 1
(no times)

A. 0
B. 3
C. 4
D. 6
E. 1

2

In-lecture quiz (L7)

https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

* Q2: How many times
does this print “x"?
1 =1
while 1 < 3:

print ("x")
1 =1+ 1
print ("x")
1 =1 + 1
print ("x")
1 =1 + 1
print ("x")
i =1+ 1

O (no times)
2

m o N T >

3
. 4
8

Functions are values too

Note

This section has nothing to do with loops.
It's here because of nowhere-else-to-stick-
It-ism.

You can overwrite print

« When talking about variable names, | said
nothing stops you from overwriting
print (other than common sense)

 Implication: print, and any functions you
make, are just variables!

« What's in the variable?

Functions are values too

q = abs

print (q(=3))
print (abs(-3))
print (g == abs)
w = print

w(g(-42))

Consider carefully

q = abs q = abs(-3)

Consider carefully

q = abs q = abs(-3)

 gis now a function *®dlsanint

+ It's the same * Its 3
function as abs (it ¢ The code for abs
IS abs!) ran, and returned
» The code for abs 3

never ran here

Why??7?

» The power of abstraction!

» Previously we could work our way out,

reusing the smaller abstractions to build
bigger ones

« Now, we can abstract big things and fill in
the inside later as we have other small
things to do!

Typing functions

* The type for functions is in a module

* This is the first type we've seen for which we
need a module

* import typing
[..] f£: typing.Callable [..]

* from typing import Callable
[...] £: Callable [..]

Why “callable”?

* Why is the type name “Callable” instead of
“Function™?

« “Callable” just means "you can call it”,
which is what we do with functions

« We'll eventually see other kinds of things
that can be called, and they're just as
good. So, we accept anything callable.

Prime factorization generalized

Let's generalize our prime factorization
function to do anything (rather than just
print) for each factor

Prime factorization generalized

import typing

def primeFactors(n: int, cb: typing.Callable) -> None:
assert n > 0, "Only positive integers
have factors"

least = 2
while n > 1:
f = least
while £f < n and n%f != 0:
f=f+ 1
cb (f)
least = £
n=n// £

def printAsFloat(x: 1nt) -> None:
print (float (x))

primeFactors (42, printAsFloat)

Prime factorization generalized

import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

assert n > 0, "Only pogative integers
have facgors"

least = 2
“ob” (for “callback”) is a common name for a function
argument when there's no descriptive name for it

L - - T

cb (f)
least = £
n=n// £

def printAsFloat(x: 1nt) -> None:
print (float (x))

primeFactors (42, printAsFloat)

	L7
	Slide 1: Warmup (L7)
	Slide 2: Less obvious loops
	Slide 3: Less obvious loops
	Slide 4: for loops
	Slide 5: More obvious loops
	Slide 6: Looping over a range of numbers
	Slide 7: Two new concepts
	Slide 8: Two new concepts
	Slide 9: for vs while
	Slide 10: for vs while
	Slide 11: for vs while
	Slide 12: Don’t be afraid to while
	Slide 13: All the ranges
	Slide 14: range restrictions
	Slide 15: It’s! Still! Imperative!
	Slide 16: It’s! Still! Imperative!
	Slide 17: It’s! Still! Imperative!
	Slide 18: In-lecture quiz (L7)
	Slide 19: In-lecture quiz (L7)
	Slide 20: Functions are values too
	Slide 21: Note
	Slide 22: You can overwrite print
	Slide 23: Functions are values too
	Slide 24: Consider carefully
	Slide 25: Consider carefully
	Slide 26: Why???
	Slide 27: Typing functions
	Slide 28: Why “callable”?
	Slide 29: Prime factorization generalized
	Slide 30: Prime factorization generalized
	Slide 31: Prime factorization generalized

