Warmup (L8)

Write a function that computes pi using the
Leibniz formula, taking a callback to decide
when to stop. The callback should be a
function that takes a float (the current
approximation) and returns True to
indicate “stop now”, False otherwise.

I

mT=4- +

OV e

Uil

NS

O |
I

Prime factorization generalized

Let's generalize our prime factorization
function to do anything (rather than just
print) for each factor

Prime factorization generalized

import typing

def primeFactors(n: int, cb: typing.Callable) -> None:
assert n > 0, "Only positive integers
have factors"

least = 2
while n > 1:
f = least
while £f < n and n%f != 0:
f=f+ 1
cb (f)
least = £
n=n// £

def printAsFloat(x: 1nt) -> None:
print (float (x))

primeFactors (42, printAsFloat)

Prime factorization generalized

import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

assert n > 0, "Only pogative integers
have facgors"

least = 2
“ob” (for “callback”) is a common name for a function
argument when there's no descriptive name for it

L - - T

cb (f)
least = £
n=n// £

def printAsFloat(x: 1nt) -> None:
print (float (x))

primeFactors (42, printAsFloat)

Debugging generalized

* |t's common to enab
debugging prints glo
commenting out eac

e or disable
pally instead of

1 one

« How do we do that? By storing print in a
variable, then changing it when we don't

want to print!

« But changing it to what...

Mocks

 Python provides a “don’t do anything”
function (mainly for testing):

from unittest.mock import Mock
doNothing = Mock ()

doNothing(%&f\iijs nothing

Note that Mock is a function that returns a function!
Make sure to call it!

Debugging generalized

from unittest.mock import Mock

debug = print

def sgrtButTerrible(n: float) -> float:
r=n/ 2
debug ("Initial guess:", r)
while abs(r**2 — n) >= 0.0001:
r = (r + n/r) / 2
debug ("Guess in loop:", r)
debug ("Final value:", r)
return r

Debugging generalized

from unittest.mock import Mock
debug = Mock () # One change, prints go away!

def sgrtButTerrible(n: float) -> float:
r=n/ 2
debug ("Initial guess:", r)
while abs(r**2 — n) >= 0.0001:
r = (r + n/r) / 2
debug ("Guess in loop:", r)
debug ("Final value:", r)
return r

More examples

* Let's do some more examples using
loops:

« Compute compound interest

« Compute pi using the Leibniz formula

AR
TE*T3TE T

Module summary

Module summary

 You've seen how to repeat in your code
with while and for loops

* while loops can have sophisticated
conditions

« Sometimes the condition is about when it
ends, sometimes when it continues

« for |lOOpPS can use ranges
e Abstraction inverted: functions are values

5114

Module 4: Strings and Lists

Sequences

CS114 M4

Sequences

« We discussed ranges for for loops

» | said it's a “grouping”, but it's more
specific: a sequence

« A sequence is a grouping of items with
some order

* range (1, 10):1,2,3,4,5,6,7,8,9

e prime numbers: 2,3,5,7, 11, ...

We've already seen a sequencel!

« Strings are just sequences of characters!
(“Character” is a general term for a glyph
used in language)

 You could say the characters have been
strung together. Yup, that's the etymology.

for ¢ in "Hello, world!":
print (c)

Manipulating sequences

« As we've seen, we can loop over
sequences

« We can also get elements from sequences
by indexing

print ("Hello, world!"[1])
&

print (range (1, 10) [2])
3

Manipulating sequences

print ("Hello, world!"[1])
o

print (range (1, 10) [24)

3

(some sequence) [index] gets an element from a
sequence

Manipulating sequences

print ("Hello, world!"[1])
S

print nge (1, 10)[2])
3

Surprised by the results?
Sequences in Python (and most programming
languages) are 0-indexed. That means that the index
for the first elementis O, not 1.

Aside on 0-indexing

« A common error is the off-by-one error,
which is exactly what it sounds like

» Some people think 0-indexing is the
cause of off-by-one errors

* When Julius Caesar was assassinated,
Julian leap years were done wrongly for
50(ish) years due to an off-by-one error.
Humans just suck at counting.

Sequence length

« Get the length of any sequence with len

« We can use ranges to loop over elements
in a different way:

s = "Hello, world!"
for 1 1n range(len(s)):
print(s[1i])

Modifying sequences

* You can access the individual characters in
a string, but you can't change them

x = "Hello, world!"
x[1] = "u" # ERROR!

e strings are immutable (un-changeable)
* SO are ranges

LiSts

CS114 M4

LiSts

» Lists are sequences that can contain
anything

» Written with square brackets:
12, 4, 6, 0, 1]

 Indexed like any sequence
x = [2, 4, 6, 0, 1]
X[2] ==

Typing lists

* The type foralistis 1ist

« But most of the time, you care what it's a
list of!

 You can specify what's in the list with, e.g.,
list[int]

* |t is always the right style to type as
specifically as possible. Don't use 1ist
when you know what's in it!

List example

» Let's write a function to average a list of
numbers

List example

» Let's write a function to average a list of
numbers

def averageOf (l: list[float]) -> float:
sum = 0.0
for val in 1:
sum = sum + val

return sum / len (1)

averageOf ([2, 4, 6, 0, 1]1) # 2.6

In-lecture quiz (L8)

 https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

* Q1: How many times does this print “x"?
for s in ["Excellent", "text", "box"]:
for ¢ 1in s:

print (c)
A. 0 (no times)

B. 1

C. 2

D. 3

E. 4

In-lecture quiz (L8)
* https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

« Q2: What does this print?

print (len (["Excellent", "text", "box"]))

A. Nothing or an error
B. Excellent text box
C. 3

D. 16

E. 18

List example

« Let's write a function to check if a value is in
a list sequence (any type of sequence!)

List example

* Let's write a function to check if a value is in
a list sequence (any type of sequence!)

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool:
for val in haystack:
1f val == needle:

return True
return False

List example

def contains (
haystack: typing.Sequence,

needle: typing.jhy
) —> bool:

The type for a sequence of any sort (string, list, range)

is in the typing module.
return True

return False

List example

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool: 1
FAawr ~~7r~ 1 anm rrot+ A A1 e

This type means “l don't care”. In this case, we're not
doing anything with the needle, so we don't actually
care what it is.

de W W UWids 44 L Lo e

List example

def contains (
haystack: typing.Sequence,
needle: typing.Any

) —> bool: 1
FAawr ~~7r~ 1 anm rrot+ A A1 e

Be wary of this type!
Remember: types are documentation! Don't just write
“any” to make the type checker shut up!

de W W UWids 44 L Lo e

The in operator

« We just wrote a contains function
* As it turns out, Python has this built in:

x = [2, 4, o6, 0, 1]

6 in x # True
"@" in "hello" # True

Lists are mutable

» Unlike the other sequences we've seen so
far, lists are mutable (changeable)

Xx = [2, 4, o, 0, 1]
print (x) [2, 4, 6, O, 1]
x[1l] = 8 change an element just

variable

%
W
like you’d change a
¥
[2, 8, 6, 0, 1]

print (x)

Using mutation

* Let's replace every value in a list with the

running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:
sum = 0.0
for 1dx in range(len(l)) :
sum = sum + 1[idx]
1[idx] = sum / (idx+1l) # O-indexing!

return sum / len(l)

Using mutation

* Let's replace every value in a list with the

running average (the average until that
point in the list)

Values in the list are replaced (after we used them)

def runningAverage (l:
sum = 0.0

ist[float]) -> float:

for 1dx in range(len(l)) :

+ 1[1dx]

1[idx] = sum / (idx+1l) # O-indexing!
return sum / len(l)

sum = Su

Modeling memory

How data is stored

« The association of variable names with
values is part of the memory of the
computer

 Each variable is said to have a slot in
memory that stores a value

« With mutable lists, we'll find that the
arrangement of memory is complicated!

* We need a mental model of how memory
WOrKS

Why it's hard

x = [2, 4, o, 0, 1]
y = X
x[1l] = 8
print (y[1]) # prints 8
for 1 1in v:
i =20
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, o, 0, 1]

= X
Y A change in x was visible in y

XQE;E%
printy[1l]) # prints 8

for 1 1in v:
i =0
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, 6, 0, 1]

y = X

x[1l] = 8

print (y[1]) # prints 8
for 1 1n vy

. " And yet this changed nothing!
l\—ﬂ
print (y[1l]) # prints 8

The graph model of memory

1|1

	L7
	Slide 1: Warmup (L8)
	Slide 2: Prime factorization generalized
	Slide 3: Prime factorization generalized
	Slide 4: Prime factorization generalized
	Slide 5: Debugging generalized
	Slide 6: Mocks
	Slide 7: Debugging generalized
	Slide 8: Debugging generalized
	Slide 9: More examples
	Slide 10: Module summary
	Slide 11: Module summary
	Slide 13: CS114
	Slide 14: Sequences
	Slide 15: Sequences
	Slide 16: We’ve already seen a sequence!
	Slide 17: Manipulating sequences
	Slide 18: Manipulating sequences
	Slide 19: Manipulating sequences
	Slide 20: Aside on 0-indexing
	Slide 21: Sequence length
	Slide 22: Modifying sequences
	Slide 23: Lists
	Slide 24: Lists
	Slide 25: Typing lists
	Slide 26: List example
	Slide 27: List example
	Slide 28: In-lecture quiz (L8)
	Slide 29: In-lecture quiz (L8)
	Slide 30: List example
	Slide 31: List example
	Slide 32: List example
	Slide 33: List example
	Slide 34: List example
	Slide 35: The in operator
	Slide 36: Lists are mutable
	Slide 37: Using mutation
	Slide 38: Using mutation
	Slide 39: Modeling memory
	Slide 40: How data is stored
	Slide 41: Why it’s hard
	Slide 42: Why it’s hard
	Slide 43: Why it’s hard
	Slide 44: The graph model of memory

