
Warmup (L8)

Write a function that computes pi using the
Leibniz formula, taking a callback to decide
when to stop. The callback should be a
function that takes a float (the current
approximation) and returns True to
indicate “stop now”, False otherwise.

𝜋 = 4 −
4

3
+
4

5
−
4

7
+
4

9
−⋯

Prime factorization generalized

Let’s generalize our prime factorization
function to do anything (rather than just
print) for each factor

Prime factorization generalized
import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

 assert n > 0, "Only positive integers

 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 cb(f)

 least = f

 n = n // f

def printAsFloat(x: int) -> None:

 print(float(x))

primeFactors(42, printAsFloat)

Prime factorization generalized
import typing

def primeFactors(n: int, cb: typing.Callable) -> None:

 assert n > 0, "Only positive integers

 have factors"

 least = 2

 while n > 1:

 f = least

 while f < n and n%f != 0:

 f = f + 1

 cb(f)

 least = f

 n = n // f

def printAsFloat(x: int) -> None:

 print(float(x))

primeFactors(42, printAsFloat)

“cb” (for “callback”) is a common name for a function
argument when there’s no descriptive name for it

Debugging generalized

• It’s common to enable or disable
debugging prints globally instead of
commenting out each one

• How do we do that? By storing print in a
variable, then changing it when we don’t
want to print!

• But changing it to what…

Mocks

• Python provides a “don’t do anything”
function (mainly for testing):

from unittest.mock import Mock

doNothing = Mock()

doNothing() # Does nothing

Note that Mock is a function that returns a function!
Make sure to call it!

Debugging generalized
from unittest.mock import Mock

debug = print

def sqrtButTerrible(n: float) -> float:

 r = n / 2

 debug("Initial guess:", r)

 while abs(r**2 – n) >= 0.0001:

 r = (r + n/r) / 2

 debug("Guess in loop:", r)

 debug("Final value:", r)

 return r

Debugging generalized
from unittest.mock import Mock

debug = Mock() # One change, prints go away!

def sqrtButTerrible(n: float) -> float:

 r = n / 2

 debug("Initial guess:", r)

 while abs(r**2 – n) >= 0.0001:

 r = (r + n/r) / 2

 debug("Guess in loop:", r)

 debug("Final value:", r)

 return r

More examples

• Let’s do some more examples using
loops:

• Compute compound interest

• Compute pi using the Leibniz formula

𝜋 = 4 −
4

3
+
4

5
−
4

7
+
4

9
−⋯

Module summary
CS114 M3

Module summary

• You’ve seen how to repeat in your code
with while and for loops

• while loops can have sophisticated
conditions

• Sometimes the condition is about when it
ends, sometimes when it continues

• for loops can use ranges

• Abstraction inverted: functions are values

CS114
Module 4: Strings and Lists

Sequences
CS114 M4

Sequences

• We discussed ranges for for loops

• I said it’s a “grouping”, but it’s more
specific: a sequence

• A sequence is a grouping of items with
some order

• range(1, 10): 1, 2, 3, 4, 5, 6, 7, 8, 9

• prime numbers: 2, 3, 5, 7, 11, …

We’ve already seen a sequence!

• Strings are just sequences of characters!
(“Character” is a general term for a glyph
used in language)

• You could say the characters have been
strung together. Yup, that’s the etymology.

for c in "Hello, world!":

 print(c)

Manipulating sequences

• As we’ve seen, we can loop over
sequences

• We can also get elements from sequences
by indexing

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

Manipulating sequences

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

(some sequence)[index] gets an element from a
sequence

Manipulating sequences

print("Hello, world!"[1])

e

print(range(1, 10)[2])

3

Surprised by the results?
Sequences in Python (and most programming

languages) are 0-indexed. That means that the index
for the first element is 0, not 1.

Aside on 0-indexing

• A common error is the off-by-one error,
which is exactly what it sounds like

• Some people think 0-indexing is the
cause of off-by-one errors

• When Julius Caesar was assassinated,
Julian leap years were done wrongly for
50(ish) years due to an off-by-one error.
Humans just suck at counting.

Sequence length

• Get the length of any sequence with len

• We can use ranges to loop over elements
in a different way:

s = "Hello, world!"

for i in range(len(s)):

 print(s[i])

Modifying sequences

• You can access the individual characters in
a string, but you can’t change them

x = "Hello, world!"

x[1] = "u" # ERROR!

• strings are immutable (un-changeable)

• So are ranges

Lists
CS114 M4

Lists

• Lists are sequences that can contain
anything

• Written with square brackets:
[2, 4, 6, 0, 1]

• Indexed like any sequence
x = [2, 4, 6, 0, 1]

x[2] == 6

Typing lists

• The type for a list is list

• But most of the time, you care what it’s a
list of!

• You can specify what’s in the list with, e.g.,
list[int]

• It is always the right style to type as
specifically as possible. Don’t use list
when you know what’s in it!

List example

• Let’s write a function to average a list of
numbers

List example

• Let’s write a function to average a list of
numbers

def averageOf(l: list[float]) -> float:

 sum = 0.0

 for val in l:

 sum = sum + val

 return sum / len(l)

averageOf([2, 4, 6, 0, 1]) # 2.6

In-lecture quiz (L8)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q1: How many times does this print “x”?
for s in ["Excellent", "text", "box"]:

 for c in s:

 print(c)

A. 0 (no times)

B. 1

C. 2

D. 3

E. 4

In-lecture quiz (L8)
• https://student.cs.uwaterloo.ca/~cs114/F25/quiz/

• Q2: What does this print?
print(len(["Excellent", "text", "box"]))

A. Nothing or an error

B. Excellent text box

C. 3

D. 16

E. 18

List example

• Let’s write a function to check if a value is in
a list sequence (any type of sequence!)

List example

• Let’s write a function to check if a value is in
a list sequence (any type of sequence!)

def contains(
 haystack: typing.Sequence,
 needle: typing.Any
) -> bool:
 for val in haystack:
 if val == needle:
 return True
 return False

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

The type for a sequence of any sort (string, list, range)
is in the typing module.

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

This type means “I don’t care”. In this case, we’re not
doing anything with the needle, so we don’t actually

care what it is.

List example

def contains(

 haystack: typing.Sequence,

 needle: typing.Any

) -> bool:

 for val in haystack:

 if val == needle:

 return True

 return False

Be wary of this type!
Remember: types are documentation! Don’t just write

“any” to make the type checker shut up!

The in operator

• We just wrote a contains function

• As it turns out, Python has this built in:

x = [2, 4, 6, 0, 1]

6 in x # True

"e" in "hello" # True

Lists are mutable

• Unlike the other sequences we’ve seen so
far, lists are mutable (changeable)

x = [2, 4, 6, 0, 1]

print(x) # [2, 4, 6, 0, 1]

x[1] = 8 # change an element just

 # like you’d change a

 # variable

print(x) # [2, 8, 6, 0, 1]

Using mutation

• Let’s replace every value in a list with the
running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:

 sum = 0.0

 for idx in range(len(l)):

 sum = sum + l[idx]

 l[idx] = sum / (idx+1) # 0-indexing!

 return sum / len(l)

Using mutation

• Let’s replace every value in a list with the
running average (the average until that
point in the list)

def runningAverage(l: list[float]) -> float:

 sum = 0.0

 for idx in range(len(l)):

 sum = sum + l[idx]

 l[idx] = sum / (idx+1) # 0-indexing!

 return sum / len(l)

Values in the list are replaced (after we used them)

Modeling memory
CS114 M4

How data is stored

• The association of variable names with
values is part of the memory of the
computer

• Each variable is said to have a slot in
memory that stores a value

• With mutable lists, we’ll find that the
arrangement of memory is complicated!

• We need a mental model of how memory
works

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

A change in x was visible in y

Why it’s hard

x = [2, 4, 6, 0, 1]

y = x

x[1] = 8

print(y[1]) # prints 8

for i in y:

 i = 0

print(y[1]) # prints 8

And yet this changed nothing!

The graph model of memory

	L7
	Slide 1: Warmup (L8)
	Slide 2: Prime factorization generalized
	Slide 3: Prime factorization generalized
	Slide 4: Prime factorization generalized
	Slide 5: Debugging generalized
	Slide 6: Mocks
	Slide 7: Debugging generalized
	Slide 8: Debugging generalized
	Slide 9: More examples
	Slide 10: Module summary
	Slide 11: Module summary
	Slide 13: CS114
	Slide 14: Sequences
	Slide 15: Sequences
	Slide 16: We’ve already seen a sequence!
	Slide 17: Manipulating sequences
	Slide 18: Manipulating sequences
	Slide 19: Manipulating sequences
	Slide 20: Aside on 0-indexing
	Slide 21: Sequence length
	Slide 22: Modifying sequences
	Slide 23: Lists
	Slide 24: Lists
	Slide 25: Typing lists
	Slide 26: List example
	Slide 27: List example
	Slide 28: In-lecture quiz (L8)
	Slide 29: In-lecture quiz (L8)
	Slide 30: List example
	Slide 31: List example
	Slide 32: List example
	Slide 33: List example
	Slide 34: List example
	Slide 35: The in operator
	Slide 36: Lists are mutable
	Slide 37: Using mutation
	Slide 38: Using mutation
	Slide 39: Modeling memory
	Slide 40: How data is stored
	Slide 41: Why it’s hard
	Slide 42: Why it’s hard
	Slide 43: Why it’s hard
	Slide 44: The graph model of memory

