Warmup (L9)

Write a function reverse (1st) to reverse
a list in place.

Hint: Swap two values using a temporary
variable, e.g.

tmp = l1lstla]

lst[a] = 1lst[b]

lst[b] = tmp

(If you're familiar with slicing or list.reverse, don't use
them. Just indexing.)

Modeling memory

How data is stored

« The association of variable names with
values is part of the memory of the
computer

 Each variable is said to have a slot in
memory that stores a value

« With mutable lists, we'll find that the
arrangement of memory is complicated!

* We need a mental model of how memory
WOrKS

Why it's hard

x = [2, 4, o, 0, 1]
y = X
x[1l] = 8
print (y[1]) # prints 8
for 1 1in v:
i =20
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, o, 0, 1]

= X
Y A change in x was visible in y

XQE;E%
printy[1l]) # prints 8

for 1 1in v:
i =0
print(y[1l]) # prints 8

Why it's hard

x = [2, 4, 6, 0, 1]

y = X

x[1l] = 8

print (y[1]) # prints 8
for 1 1n vy

. " |And yet this changed nothing!
l\—ﬂ
print (y[1l]) # prints 8

The graph model of memory

1|1

The graph model of memory

r————ﬂ

Memory slots store values

.
.
.
.
.
.
.
-
I BN B B - e) B B S B
-

-
I u
I
I
I

| 2

The graph model of memory

r————ﬂ

' [>] 1 Numbers (both int and
| I float)and strings are
N 4 values.
| |
(6]
" o]
nl
AP 1 |
L L ——]
/-

The graph model of memory

r————ﬂ

| 9) | List references are values!
X | ! The thing in the memory
N 4 | slotis not the list, it is a
| | reference to the list!
1 |6 :
I
/ ' (Shown as an arrow here. “Pointer”
y : 0 : usually has the same meaning.)
| |
l. . |
ce 1 |
o L ———_1

pud o
pr—

The graph model of memory

r————ﬂ

| 9) | When we index, we copy
< | | the value out of the slot,
| |
| 6 | copies the 1
v /VE 0 i from y[4] to i
| |
Rl
e L ———-1
/-

pud o
e —

The graph model of memory

————1

A for loop is just short-
hand for copying the

values out of the array, so
for 1 1n vy:

does the same. Changing
i doesn't change y[4],
because it was a copy!

\J

r_'___

.‘
.
.
.

The graph model of memory

« We've just added a major complication to
Python: reference types

A reference type is a kind of value that is
stored as a reference, rather than the
content being stored directly in a slot

 Reference types allow spooky action at a
distance

* Let's write a function to square every
value in a list

Reference types

def squarelist(l: list[float]) -> None:
for 1 in range(len(l)) :
1[1] = 1[i]**2

No return??? Then how does this do anything?

Reference types

def squarelist(l: list[float]) -> None:
for 1 in range(len(l)) :
1[1i] = 1[1i]**2
2= (2,4, 6, 0, 1] Let's draw what the

memory in this program

squarelList (a) .
looks like on the board.

Example of mutating a list

e Let's make a function to remove all the 2s
from the factors of a list of numbers

def removeFactorsOfTwo(l: list[int]) —-> None:
for 1idx in range(len(l)):
val = 1[idx]
while val%2 == 0 and val > 1:
val = val // 2
1[1idx] = wval

Example of mutating a list

This function doesn’t return anything,
because it only modifies the list.

def removeFactorsOfTwo (l: list[int]) -2 None:

for 1idx in range(len(l)):
val = 1[idx]
while val%2 ==
val = val // 2
1[1idx] = wval

Example of mutating a list

Why did we loop by indices instead of for
val in 17 The value is copied out of the
grouping, so changing val does nothing!

def removeFactorsOfTwo (1 ist[int]) -> None:

Again with feeling!

a = [1, 2, 3] a = [1, 2, 3]

for v in a: for 1 in range(len(a)) :
v = v * 2 ali] = afi] * 2

a is still [1, 2, 3] # a is now [2, 4, 6]

Again, let's draw what memory in these
programs looks like on the board

Isn't this confusing?

* Yup!

* ... what, you thought | was going to have a justification here?

Isn't this confusing?

* Yup!

 Usual justification: copying things takes
time, so don’t. A list can be millions of
slots!

- However, using things by reference can
be helpful. Think of runningAverage or
squarelList.

Pedantry corner

* This is a mental model, not a literal
description of what's going on in memory

* If a type is immutable (think strings),
there's no way for you to tell if what's in
the slot is a reference or a value

* Values are easier to reason about, so in
our mental model, we think of all
immutable things as values

A note on equality

» Two lists are equal (== says “True”) if they contain
equal elements, even if they're not the same reference
in memory

» If you want to know if they're the same reference in
memory, there’s another comparison for it, “is”

x = [2, 4, 6, 0, 1]

y = X

z = [2, 4, 6, 0, 1]

x ==y and x == z # True

x is v # True

x is z # False

y[1l] = 8

x == z # False, spooky action at a distance!

A note on equality

» Two lists are equal (== says “True”) if they
contain equal elements, even if they're
not the same reference in memory

* |If you want to know if they're the same
reference in memory, there's another
comparison for it, “is”

* |t's pretty rare to need is, and is can
reveal surprising details about Python’s
real memory model, so usually use ==

Example break

* Let's find the greatest value in a list

def greatest(lst: list[float]) -> float:
assert len(lst) > 0, "No greatest in
an empty list"
r = 1st[0] # Need to start with
something!
for val in 1lst:
if val > r:
r = val
return r

Expanding lists

Insertion

* As well as changing values in the list, we
can insert slots into the list (and put
values there)

e = [2, 6, 8]
e.lnsert (1, 4)
e.lnsert (0, 0O)

Insertion

Where to insert the value.
Which value to insert.

e = [2, 8]
e.lnsert (1, 4)
e.lnsert (0, 0O)

Insertion

Remember the dot (asin math.sqgrt)? It's
also how you get special functions that act
on lists (and other things we'll see later).

e.fnsert (1, 4)
e.1lnsert (0, 0O)

Insertion

These functions you get with dot (“on” the
list) are called “methods”.

e:[16/8]
e.lnsert (1, 4)
e.1lnsert (0, 0O)

Insertion

Let's add some prints to understand our
lists as the code runs.

e = [2, 6, 8]
e.lnsert (1, 4)
e.1lnsert (0, 0O)

Appending

» There'’s a special version of insert for
the common case of inserting at the end

e = [O, 2, 4, 6/ 8]
e.append (10)

Using append

* Let’s collect all the common divisors of two
integers into a list (sort of “all-cd” instead of

gcd)

def divisors(x: 1nt, y: 1nt) -> list[int]:
r = []
1 =1
while 1 <= x and 1 <= y:
if x%1 == 0 and y%1 ==

r.append (1)
1 =1 + 1
return r

Shrinking lists

* Just like we can add items, we can remove
items by popping them out of the list:

= [0, 2, 4, 6, 8]

.pop (0) # Removes element at index O

e is now [2, 4, 6, 8]

.pop () # By default, removes the last element
e is now [2, 4, 6]

H+= O H= DO O

How does this affect loops?

« Nothing in Python stops you from
changing the length of a list while you
loop through it

« But, the behavior is hugely confusing, so
best avoided

x = [2, 4, 6, 0, 1]
for v in x:
print (v) # Which values will actually print here???

x.pop (0)

Slicing and joining

References are Hell!

« Remembetr, lists are a reference type: if you
pass a list to a function and it modifies it,
you will see the changes!

* This was done because copying is slow
« But sometimes you want to copy!

x = [2, 4, 6, 0, 1]

y = X[] G— But what's this thing???
y[0] = 4

x is still [2, 4, 6, 0, 1]

New syntax!

e x[:] was a slice of x

« Why did we call it a slice when it was a

copy? Because that hamburger operator
is so much more powerful!

	L8
	Slide 1: Warmup (L9)
	Slide 2: Modeling memory
	Slide 3: How data is stored
	Slide 4: Why it’s hard
	Slide 5: Why it’s hard
	Slide 6: Why it’s hard
	Slide 7: The graph model of memory
	Slide 8: The graph model of memory
	Slide 9: The graph model of memory
	Slide 10: The graph model of memory
	Slide 11: The graph model of memory
	Slide 12: The graph model of memory
	Slide 13: The graph model of memory
	Slide 14: Reference types
	Slide 15: Reference types
	Slide 16: Example of mutating a list
	Slide 17: Example of mutating a list
	Slide 18: Example of mutating a list
	Slide 20: Again with feeling!
	Slide 21: Isn’t this confusing?
	Slide 22: Isn’t this confusing?

	L9
	Slide 24: Pedantry corner
	Slide 25: A note on equality
	Slide 26: A note on equality
	Slide 27: Example break
	Slide 28: Expanding lists
	Slide 29: Insertion
	Slide 30: Insertion
	Slide 31: Insertion
	Slide 32: Insertion
	Slide 33: Insertion
	Slide 34: Appending
	Slide 35: Using append
	Slide 36: Shrinking lists
	Slide 37: How does this affect loops?
	Slide 38: Slicing and joining
	Slide 39: References are Hell!
	Slide 40: New syntax!

