Warmup (L10)

Add a line of code where specified to make
this print 42, otherthan x[1]1 [1] = 42

x = [[0, O, O], [0, O, O1]
put a line here

x[0][1] = 42

print (x[1][1])

New syntax!

* (sequence) [from: to]

« Makes a copy of the sequence, from from
to to

* Like range, from is inclusive, to is
exclusive

« The fromand to are the indices, not
values!

Basic slices
» Let's split a list in half using slicing

midpoint = len(lst) // 2
left = 1st[0O:midpoint]
right = lst[midpoint:len(lst)]

More advanced slicing

 Where did [:] come from?
« Both from and to are optional!

« By default, from =0
« By default, to = 1len (the sequence)

« With both defaults, you copy the whole list

« There's a third part, also optional: the step
(just like range)

« 1st[::2] gets every second element

e Ist[::-1] reverses a sequence

More advanced indexing

e [t's common to want the last elementin a
ist (or other sequence)

* Obvious way: 1st[len(lst)-1]

» Python lets you shorthand by using a
negative index: 1st [-1]

« Same works with slicing, and insert, and
pop, and everything else!

Joining

 You can also join (called concatenate) lists
or other sequences with +

"Hello, " + "world!" == "Hello, world!"
[3/ 1/ 4] + [1/ 5/ 9] == [3/ 1/ 4/ 1/ 5/ 9]

The reverse interleave

e Let's write a function to reverse interleave
a list

« What this means is, for instance, turn
(1, 2, 3, 4, 5, 6]into
[1/ 3/ 5/ 2/ 4, 6]

 Perfectly interleaving or reverse interleaving
playing cards is a basic magicians’ trick

The reverse interleave

def reverselInterleave (deck: 1list) —-> 1list:
return deck[::2] + deck[1l::2]

* (Yup, that's it! Slicing is powerful, eh?)

Sequence conversions

 You can convert any other sequence into
a list by using 1ist as a function:

list ("Hello!") ==
["H"’ HeH’ HlH’ "l"’ "o"’ "!"]

The second dimension

The second dimension

 To represent anything two-dimensional,
it's common to use lists within lists
(nested lists)

* E.g., a tic-tac-toe board might look like
this:
board — [:" "’ "x", 1A ": ,
:" "’"x"’"O": ,

A " " " " LA
4 ’/

The second dimension

* Think carefully about memory! Let's draw
our tic-tac-toe board on the blackboard.

* |t's easy to make surprising mistakes
board[2] = board[1l]
board[Z2] [1] = "o"

Now board[l][1l] is also "o"!

Tuples

CS114 M4

Tuples are immutable lists

« One more sequence type: tuples
 Tuples are just immutable lists

 Created with parentheses:
x = (2, 4, o6, 0, 1)

Why tuples?

« Why would we want immutable lists when
we already have lists?

« Usually to box together multiple values of
disparate types that are related in
meaning

* The type for a list can only have one “what’s
in the list” type, because it's expandable

« The type for a tuple can list every type in it,
because it's fixed

Typing tuples

X: tuplelint, str] = (24601, "Jean Valjean')

You can name each individual type in a tuple, but for a
list, they all have to be the same!

Returning tuples

« Most common use is returning multiple
things from a function

« We'll do this with an example in a
moment

In-lecture quiz (L10)

* https://student.cs.uwaterloo.ca/~cs114/quiz/

* Q1: What does this code print?
nums = [0, 1, 2, 3, 4, 5]
print (nums[—-4:-1])

A. [2, 3, 4]
B. [3, 4, 5]
C. [2, 3,4, 5]
D. [1, 2, 3]

In-lecture quiz (L10)

* https://student.cs.uwaterloo.ca/~cs114/quiz/

« Q2: What does this (awful) code print?
nums = [0, 1, 2, 3, 4, 5]
print (nums[-4:-1][::2][1])

A. Nothing or an error
B. 2
C. 3
D. 4

Fun with lists

Longest string

 Find the longest string in a list

* Instead of returning a string, return a list
of all strings of the same length, and the
length

Longest string

def longest(strs: list[str]) ->
tuple[list[str],int]:
r = [strs[0]]
for s in strs[l:]:
if len(s) > len(r[0]):
r = [s]
elif len(s) == len(r[0]):
r.append(s)
return (r, len(r[0]))

[...]
(res, length) =_longest(["a", "blue", "duck"])

You can assign to a tuple of variables to get the values
out of a tuple. We could've also used indexing.

Another version of pi

« One way to calculate pi is the dartboard
technique: throw darts at a square board with a
quarter circle in it, and the proportion that land in
the circle can tell us pi

« We'll need one new feature to do this: random
numbers:

import random
random.random() # A random number
between 0.0 and

1.0
(inclusive, exclusive)

Monte Carlo pi

import random

def monteCarloPi (rounds: int) -> float:
xXs = []
ys = []
for in range (rounds) :

xs.append (random. random ())
ys.append (random.random ())

How many fall in the quarter circle?

inside = 0
for i1idx in range (rounds) :
X = xs|[1dx]
y = ys[1dx]
if x*x + y*y <= 1:
inside = inside + 1

return 4 * inside / rounds

Module summary

Module summary

» Strings and ranges are sequences
« for loops loop over sequences

» Lists are mutable sequences

« Lists are reference types
 Memory model

« Expanding/contracting lists

» Slicing and joining lists

 Tuples are immutable lists

	L9
	Slide 1: Warmup (L10)
	Slide 2: New syntax!
	Slide 3: Basic slices
	Slide 4: More advanced slicing
	Slide 5: More advanced indexing
	Slide 6: Joining
	Slide 7: The reverse interleave
	Slide 8: The reverse interleave
	Slide 9: Sequence conversions
	Slide 10: The second dimension
	Slide 11: The second dimension
	Slide 12: The second dimension
	Slide 13: Tuples
	Slide 14: Tuples are immutable lists
	Slide 15: Why tuples?
	Slide 16: Typing tuples
	Slide 17: Returning tuples
	Slide 18: In-lecture quiz (L10)
	Slide 19: In-lecture quiz (L10)
	Slide 20: Fun with lists
	Slide 21: Longest string
	Slide 22: Longest string
	Slide 23: Another version of pi
	Slide 24: Monte Carlo pi
	Slide 27: Module summary
	Slide 28: Module summary

