
Warmup (L10)

Add a line of code where specified to make
this print 42, other than x[1][1] = 42

x = [[0, 0, 0], [0, 0, 0]]

put a line here

x[0][1] = 42

print(x[1][1])

New syntax!

• (sequence)[from:to]

• Makes a copy of the sequence, from from
to to

• Like range, from is inclusive, to is
exclusive

• The from and to are the indices, not
values!

Basic slices

• Let’s split a list in half using slicing

midpoint = len(lst) // 2

left = lst[0:midpoint]

right = lst[midpoint:len(lst)]

More advanced slicing
• Where did [:] come from?

• Both from and to are optional!

• By default, from = 0

• By default, to = len(the sequence)

• With both defaults, you copy the whole list

• There’s a third part, also optional: the step
(just like range)

• lst[::2] gets every second element

• lst[::-1] reverses a sequence

More advanced indexing

• It’s common to want the last element in a
list (or other sequence)

• Obvious way: lst[len(lst)-1]

• Python lets you shorthand by using a
negative index: lst[-1]

• Same works with slicing, and insert, and
pop, and everything else!

Joining

• You can also join (called concatenate) lists
or other sequences with +

"Hello, " + "world!" == "Hello, world!"

[3, 1, 4] + [1, 5, 9] == [3, 1, 4, 1, 5, 9]

The reverse interleave

• Let’s write a function to reverse interleave
a list

• What this means is, for instance, turn
[1, 2, 3, 4, 5, 6] into
[1, 3, 5, 2, 4, 6]

• Perfectly interleaving or reverse interleaving
playing cards is a basic magicians’ trick

The reverse interleave

def reverseInterleave(deck: list) -> list:

return deck[::2] + deck[1::2]

• (Yup, that’s it! Slicing is powerful, eh?)

Sequence conversions

• You can convert any other sequence into
a list by using list as a function:

list("Hello!") ==

["H", "e", "l", "l", "o", "!"]

The second dimension
CS114 M4

The second dimension

• To represent anything two-dimensional,
it’s common to use lists within lists
(nested lists)

• E.g., a tic-tac-toe board might look like
this:
board = [[" ","x"," "],

[" ","x","o"],

[" "," "," "]]

The second dimension

• Think carefully about memory! Let’s draw
our tic-tac-toe board on the blackboard.

• It’s easy to make surprising mistakes
board[2] = board[1]

board[2][1] = "o"

Now board[1][1] is also "o"!

Tuples
CS114 M4

Tuples are immutable lists

• One more sequence type: tuples

• Tuples are just immutable lists

• Created with parentheses:
x = (2, 4, 6, 0, 1)

Why tuples?
• Why would we want immutable lists when

we already have lists?

• Usually to box together multiple values of
disparate types that are related in
meaning

• The type for a list can only have one “what’s
in the list” type, because it’s expandable

• The type for a tuple can list every type in it,
because it’s fixed

Typing tuples

x: tuple[int, str] = (24601, "Jean Valjean")

You can name each individual type in a tuple, but for a
list, they all have to be the same!

Returning tuples

• Most common use is returning multiple
things from a function

• We’ll do this with an example in a
moment

In-lecture quiz (L10)

• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q1: What does this code print?
nums = [0, 1, 2, 3, 4, 5]

print(nums[-4:-1])

A. [2, 3, 4]

B. [3, 4, 5]

C. [2, 3, 4, 5]

D. [1, 2, 3]

In-lecture quiz (L10)

• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q2: What does this (awful) code print?
nums = [0, 1, 2, 3, 4, 5]

print(nums[-4:-1][::2][1])

A. Nothing or an error

B. 2

C. 3

D. 4

Fun with lists
CS114 M4

Longest string

• Find the longest string in a list

• Instead of returning a string, return a list
of all strings of the same length, and the
length

Longest string
def longest(strs: list[str]) ->

 tuple[list[str],int]:

 r = [strs[0]]

 for s in strs[1:]:

 if len(s) > len(r[0]):

 r = [s]

 elif len(s) == len(r[0]):

 r.append(s)

 return (r, len(r[0]))

[…]

(res, length) = longest(["a", "blue", "duck"])

You can assign to a tuple of variables to get the values
out of a tuple. We could’ve also used indexing.

Another version of pi

• One way to calculate pi is the dartboard
technique: throw darts at a square board with a
quarter circle in it, and the proportion that land in
the circle can tell us pi

• We’ll need one new feature to do this: random
numbers:

import random

random.random() # A random number

 # between 0.0 and

 # 1.0

 # (inclusive, exclusive)

Monte Carlo pi
import random
def monteCarloPi(rounds: int) -> float:
 xs = []
 ys = []
 for _ in range(rounds):
 xs.append(random.random())
 ys.append(random.random())

 # How many fall in the quarter circle?
 inside = 0
 for idx in range(rounds):
 x = xs[idx]
 y = ys[idx]
 if x*x + y*y <= 1:
 inside = inside + 1

 return 4 * inside / rounds

Module summary
CS114 M4

Module summary

• Strings and ranges are sequences

• for loops loop over sequences

• Lists are mutable sequences

• Lists are reference types

• Memory model

• Expanding/contracting lists

• Slicing and joining lists

• Tuples are immutable lists

	L9
	Slide 1: Warmup (L10)
	Slide 2: New syntax!
	Slide 3: Basic slices
	Slide 4: More advanced slicing
	Slide 5: More advanced indexing
	Slide 6: Joining
	Slide 7: The reverse interleave
	Slide 8: The reverse interleave
	Slide 9: Sequence conversions
	Slide 10: The second dimension
	Slide 11: The second dimension
	Slide 12: The second dimension
	Slide 13: Tuples
	Slide 14: Tuples are immutable lists
	Slide 15: Why tuples?
	Slide 16: Typing tuples
	Slide 17: Returning tuples
	Slide 18: In-lecture quiz (L10)
	Slide 19: In-lecture quiz (L10)
	Slide 20: Fun with lists
	Slide 21: Longest string
	Slide 22: Longest string
	Slide 23: Another version of pi
	Slide 24: Monte Carlo pi
	Slide 27: Module summary
	Slide 28: Module summary

