
Warmup (L11)
• You have files named, e.g.,
"2023-04-13_finances.txt". Write
functions that take a filename as argument
to extract info:

• fileYear(filename) returns the year as an
int

• fileMonth(filename) returns the month as
an int

• fileDay(filename) returns the day of the
month as an int

• fileSubject(filename) returns the subject
(“finances” above) as a string

Sorting and Dictionaries
M5

in order? put things Why
CS114 M5

Sorting

• Lists can be in any order (whatever order
you put things in it)

• Some things would be easier if they were
in order: What’s the least value? The
most? The biggest gap?

• So, in some cases it’s useful to put things
in order

Sorting a list

• Lists have a method to do this!

lst = [2, 4, 6, 0, 1]

lst.sort()

print(lst) # [0, 1, 2, 4, 6]

Sorting a list

• Lists have a method to do this!

lst = [2, 4, 6, 0, 1]

x = lst

lst.sort()

print(x) # [0, 1, 2, 4, 6]

This sorts in place, so all references will see the same
sorting.

It’s just <

• Under the surface, it’s just using < to sort

• < works on numbers and strings, but not
between numbers and strings

lst = [99, "bottles of beer on the wall"]

lst.sort() # Error!

Surprising sorts!

• < can also compare lists, so .sort() can
sort a list of lists!

x = [[3], [2, 1]]

x[0] < x[1] # False

x.sort()

print(x) # [[2, 1], [3]]

Non-mutating sort

• .sort() mutates the list

• It’s a method of lists: doesn’t work on strings,
ranges, tuples

• Also a built-in function to sort any sequence,
by duplicating it into a list:

x = sorted("hello, world!")

print(x) # [" ", "!", ",", "d", "e",

 # "h", "l", "l", "l", "o",

 # "o", "r", "w"]

Least, greatest, gap

• Let’s solve exactly the question we started
with: find the least, greatest, and greatest
gap of a list

Least, greatest, gap

• Let’s solve exactly the question we started
with: find the least, greatest, and greatest
gap of a list

def lgg(lst: list[float]) -> tuple[float, float, float]:

 s = sorted(lst)

 greatestGap = 0.0

 for idx in range(0, len(lst)-1):

 gap = s[idx+1] – s[idx]

 if gap > greatestGap:

 greatestGap = gap

 return (s[0], s[-1], greatestGap)

Named parameters
CS114 M5

Read the documentation!
• Feeling a bit limited by .sort() and sorted? Remember

that help can tell us how to use anything!

help([1, 2, 3].sort)
Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list
instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable
(i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and
sort them,
 ascending or descending, according to their function
values.

 The reverse flag can be set to sort in descending order.

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

An “instance” is one thing from a type of things.
[1, 2, 3] is an instance of a list,

1 is an instance of an int

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

The asterisk (somewhat confusingly) says that there
are no normal parameters. We can’t do x.sort(42),

because what would the 42 mean?

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

But what are these things???

Reverse sort

• What if we want things backwards? .sort
has a parameter for reversing, but it doesn’t
look like a normal parameter…

• It’s a named parameter (or keyword
argument). To pass it in, you have to name it:

Reverse sort

• What if we want things backwards? .sort
has a parameter for reversing, but it doesn’t
look like a normal parameter…

• It’s a named parameter (or keyword
argument). To pass it in, you have to name it:

x = [2, 4, 6, 0, 1]

x.sort(reverse=True)

print(x) # [6, 4, 2, 1, 0]

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance
 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,
 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

OK, we saw “reverse”, but what does this mean?

Key sort

• Sorting normally uses <

• This only works on things you can
compare with <, but it’s also pretty limited

• What if I wanted to sort strings by their
length?

• .sort() provides a way to change the
sorting criteria: a key function

Sort strings by length

x = ["an", "excellent", "list", "of", "strings"]

x.sort(key=len)

print(x) # ["an", "of", "list", "strings", "excellent"]

Sort ints even/odd
def parity(val: int) -> int:

 return val%2

lst = [8, 6, 7, 5, 3, 0, 9]

s = sorted(lst, key=parity)

print("After sorted, lst is", lst)

print("Sorted:", s)

lst.sort(key=parity)

print("After .sort, lst is", lst)

[8, 6, 0, 7, 5, 3, 9]

Sort ints even/odd
def parity(val: int) -> int:

 return val%2

lst = [8, 6, 7, 5, 3, 0, 9]

s = sorted(lst, key=parity)

print("After sorted, lst is", lst)

print("Sorted:", s)

lst.sort(key=parity)

print("After .sort, lst is", lst)

[8, 6, 0, 7, 5, 3, 9]

NOTE: Sorting is “stable”. This means that if two
distinct values could go in either order (such as 8 and

0 here) it won’t swap them.

In-lecture quiz (L11)
• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q1: What will this print?
def first(s: str) -> str:
 return s[0]
print(sorted(
 ["an", "aardvark", "ate", "ants"],
 key=first
))

A. Nothing or an error

B. ['an', 'aardvark', 'ate', 'ants']

C. ['aardvark', 'an', 'ants', 'ate']

D. ['ate', 'aardvark', 'an', 'ants']

E. ['ate', 'ants', 'an', 'aardvark']

In-lecture quiz (L11)
• https://student.cs.uwaterloo.ca/~cs114/quiz/

• Q2: What will this print?
def verst(s: str) -> str:
 return s[::-1]
print(sorted(
 ["an", "aardvark", "ate", "ants"],
 key=verst
))

A. Nothing or an error

B. ['an', 'aardvark', 'ate', 'ants']

C. ['aardvark', 'an', 'ants', 'ate']

D. ['ate', 'aardvark', 'an', 'ants']

E. ['ate', 'ants', 'an', 'aardvark']

	Slide 1: Warmup (L11)
	Slide 2: Sorting and Dictionaries
	Slide 3: in order? put things Why
	Slide 4: Sorting
	Slide 5: Sorting a list
	Slide 6: Sorting a list
	Slide 7: It’s just <
	Slide 8: Surprising sorts!
	Slide 9: Non-mutating sort
	Slide 10: Least, greatest, gap
	Slide 11: Least, greatest, gap
	Slide 12: Named parameters
	Slide 13: Read the documentation!
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Reverse sort
	Slide 19: Reverse sort
	Slide 20
	Slide 21: Key sort
	Slide 22: Sort strings by length
	Slide 23: Sort ints even/odd
	Slide 24: Sort ints even/odd
	Slide 26: In-lecture quiz (L11)
	Slide 27: In-lecture quiz (L11)

