
Module 2: Making Decisions
E

xe
rc

is
e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-02-start.ipynb

Discuss the previous module with your neighbour.

What are all the parts we need to define a function properly?

1/19 CS 114 - Fall 2024 Module 2, Section 1: Making Decisions

What does “<” mean?

Consider the expression “x < 5”.

In math class, it tells us something about x .

We might combine the statement “x < 5” with the statements “x is even”, “x is positive”
and “x is a perfect square” to conclude “x is 4”.

In Python, “<” means something different. A variable such as x already has a value.

2/19 CS 114 - Fall 2024 Module 2, Section 1: Making Decisions

What does “<” mean?

Suppose I define a constant: x = 10

Now I create a Python expression as close as possible to the math expression “x > 5”:
x > 5

This is asking “is this true?”

The statement “x > 5” can only be true or false. Which one?

Since x refers to the value 10, saying x > 5 is like saying 10 > 5.

Since it is true that 10 > 5, the statement evaluates to True.

On the other hand, if I create a variable:
y = 2

Now y > 5 ⇒ 2 > 5 ⇒ False since it is not true that 2 > 5.

3/19 CS 114 - Fall 2024 Module 2, Section 1: Making Decisions

Boolean values (bool)

True and False are each values, just like 42, 3.14, and "hello world" are values.

These values are called Booleans, after George Boole. The Python type is bool.

<, >, <=, >=, ==, and !=, are operators, each of which results in a Boolean value.

5 < 10 ⇒ True

20 < 10 ⇒ False

42 == 42 ⇒ True

The != operator is supposed to look a little like “,”. It means “not equal”.

42 != 17 ⇒ True

42 != 42 ⇒ False

4/19 CS 114 - Fall 2024 Module 2, Section 1: Making Decisions

https://en.wikipedia.org/wiki/George_Boole

Boolean values (bool)

A bool value is a value; it can be stored in a variable:

x = y < 4

Provided y is a number less than 4, x will now be True; if y is a number 4 or greater, x will
now be False.

E
xe

rc
is

e What is the value of x after I run these two lines of code?
x = 5

x = x == 5

5/19 CS 114 - Fall 2024 Module 2, Section 1: Making Decisions

and now for something completely different

We combine Boolean expressions using the operators and, or, and not. These all take and
return bool values.

and returns False if at least one of its arguments is False, and True otherwise.
(5 > 4) and (7 != 2) ⇒ True

(5 >= 5) and (7 <= 2) and (5 > 1) ⇒ False

True and (3 < 7) and (9 >= 1) ⇒ True

or returns True if at least one of its arguments is True, and False otherwise.
(5 >= 4) or (7 > 2) ⇒ True

(4 > 5) or (2 != 2) or (9 < 4) ⇒ False

not returns True if its argument is False, and False if its argument is True.
not (5 == 4) ⇒ True

not ((10 <= 15) and (7 > 3)) ⇒ False

6/19 CS 114 - Fall 2024 Module 2, Section 2: Combining Boolean Expressions

and now for something completely different

Work out what the snippet should display. Then run to verify.

E
xe

rc
is

e def foo(a: int, b: int) -> bool:
return a == 3 or b == 3

foo(3, 3) ⇒ ?
foo(6, 7) ⇒ ?
foo(3, 7) ⇒ ?

7/19 CS 114 - Fall 2024 Module 2, Section 2: Combining Boolean Expressions

and now for something completely different

Work out what the snippet should display. Then run to verify.

E
xe

rc
is

e def bar(a: int, b: int) -> bool:
return a or b == 3

bar(0, 3) ⇒ ?
bar(3, 0) ⇒ ?
bar(5, 5) ⇒ ?

!

We write a or b == 3.
In English I might say “if a or b is three”. That is not what the Python code means.
This is like saying (a) or (b == 3). The value is True if a is True, or if b == 3 is True.
It does not mean the value is True if a == 3 is True or if b == 3 is True.

Python is not English! For clarity, use and and or with values that are True or False.

To get the meaning of the English, we should write a == 3 or b == 3.

8/19 CS 114 - Fall 2024 Module 2, Section 2: Combining Boolean Expressions

Who cares?!? Conditionals

−1 0 1 2

−1

0

1

2 A sin-squared window, used in signal processing,
can be described by the following piecewise
function:

f (x) =


0 for x < 0
1 for x ≥ 1
sin2(xπ/2) for 0 ≤ x < 1

Under some conditions, it does one thing;
under other conditions, it does other things.

9/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Using if/elif/else to describe cases

We can write this mathematical expression in Python as follows:

f (x) =


0 for x < 0
1 for x ≥ 1
sin2(xπ/2) for 0 ≤ x < 1

def ssqw(x: float) -> float:
"""Transform x by a sin-squared window."""
if x < 0.0:

return 0.0
elif x >= 1.0:

return 1.0
else:

return math.sin(x * math.pi / 2) ** 2

When working with if we write:
1 The keyword if,
2 a Boolean expression (“question”),
3 a colon,
4 an indented block of code.

This may be followed by:
5 additional elif - Boolean - colon - block,
6 an else - colon - block.

10/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Interpreting if statements

Python checks the “question” of the if. If the question True, it executes the block of code.

Otherwise, it looks through any elif statements, until it find a branch where the “question”
evaluates to True.

If none evaluates to True, it executes the else branch, if there is one.
def ssqw(x: float) -> float:

"""Transform x by a sin-squared window."""
if x < 0.0:

return 0.0
elif x >= 1.0:

return 1.0
else:

return math.sin(x * math.pi / 2) ** 2

Imagine calculating: ssqw(-1.5)

ssqw(1.5)

ssqw(0.1)

11/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Problem solving with if
E

xe
rc

is
e

Use if to write a function absolute_value(n: float) -> float which returns |n|.
(There is a built-in function abs which does this, but don’t use it now.)

Consider that one way to define absolute value is as follows:

|n| =
{
−n if n < 0
n if n ≥ 0

12/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Nested Conditionals

A museum offers free admission for people who arrive after 5 pm. Otherwise, the cost of
admission is based on a person’s age: age 12 and under are charged $9 and everyone
else is charged $16.

We will write a function admission(isafter5: bool, age: int) -> int to calculate the
admission price.

E
xe

rc
is

e

Use check.expect to write at least 3 tests for admission, one for each price category.

E
xe

rc
is

e

Complete the function admission(isafter5: bool, age: int) -> int that returns the
admission cost.

H
in

t isafter5 is a bool.
So it can be directly used as a question in an if statement, like if isafter5:

13/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Flattening Nested Conditionals

Sometimes it is desirable to flatten conditionals.

That is, instead of having a if with another if inside, we can rework them so they are
multiple clauses of a single if.
def cost(isafter5: bool, age: int) -> int:

if isafter5:
return 0

else:
if age <= 12:

return 9
else:

return 16

↔

def cost(isafter5: bool, age: int) -> int:
if isafter5:

return 0
elif age <= 12:

return 9
else:

return 16

14/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Flattening Nested Conditionals
E

xe
rc

is
e

Flatten the code in this function so there is only one if/elif/else, with four branches.
def flatten_me(x: int) -> str:

15/19 CS 114 - Fall 2024 Module 2, Section 3: Conditional expressions

Black-box and white-box testing

“In science, computing, and engineering, a black box is a device. . . which
can be viewed in terms of its inputs and outputs, without any knowledge of its
internal workings.” (Wikipedia)

Black-box testing refers to testing without reference to how the program works.
Black-box tests should be written before you write your code. Your examples are
black-box tests.

“A white box is a subsystem whose internals can be viewed but usually not
altered.” (Wikipedia)

White-box testing should exercise every line of code. Design a test to check both sides of
every question in every if/elif/else.

These tests are designed after you write your code, by looking at how the code works.

16/19 CS 114 - Fall 2024 Module 2, Section 4: Testing conditionals

White-Box Testing

Consider writing white box tests for this code: def cost(isafter5: bool, age: int) -> int:
if isafter5:

return 0
elif age <= 12:

return 9
else:

return 16

We need to be sure to test every branch. Here is one suggestion of tests:

1 check.expect(cost(True, 42), 0) to test the first branch.
2 check.expect(cost(False, 7), 9) to test the second branch.
3 check.expect(cost(False, 42), 15) to test the third branch.

Additional tests are desirable to check edge cases. These help us verify that we did what
we meant to do: did we really mean to use <= instead of < ?

Testing with age of 11, 12, and 13 would cover the edge cases.

17/19 CS 114 - Fall 2024 Module 2, Section 4: Testing conditionals

Boolean operators and strings

We can use the same operators on any type, not just on numbers. Try these:

str1 = "Frobisher"
str2 = "Frontenac"

print(str1 == str2)

Two strings are equal if they’re the same.

For strings, “<” compares character by character. If the strings start the same, it goes until
it finds something different.

So because 'b' < 'o' ⇒ True, we see also that 'Frobisher' < 'Frontenac' ⇒ True.

One detail: every uppercase letter is “less than” every lowercase: 'Z' < 'a' ⇒ True.

We’ll call the ordering that we get from < “alphabetic order”, even when we’re not
comparing alphabetic letters: "$1ll1n355" < "&t1t00d" ⇒ True

18/19 CS 114 - Fall 2024 Module 2, Section 4: Testing conditionals

Module summary

Become comfortable using Boolean operators such as <, >=, ==, and !=.
Start using if/elif/else, and, or, and not.
Get used to combining these statements with the rest of our tools.
Test these expressions, and know what black-box and white-box testing are.

Before we begin the next module:
Read and complete the exercises in module 2 of the online textbook, at
https://online.cs.uwaterloo.ca/
Complete the module 2 Review Quiz, due on Monday.

19/19 CS 114 - Fall 2024 Module 2, Section 5: Summary

https://online.cs.uwaterloo.ca/

	Making Decisions
	Combining Boolean Expressions
	Conditional expressions
	Testing conditionals
	Summary

