
Module 3: While Loops
E

xe
rc

is
e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-03-start.ipynb

Discuss the previous module with your neighbour.

What are bool values, and what can we do with them?
How exactly do you write an if statement with many branches?

1/17 CS 114 - Fall 2024 Module 3

Repetition

One basic thing we often want to do with computers is to do something repeatedly.

For example, to count down from 5 to 1, I could write:
print(5)

print(4)

print(3)

print(2)

print(1)

print("Blastoff!")

But this looks like work, and I’m lazy.

If I wanted to do the same thing starting at 100, it would be a lot of work.

There must be a better way, and there is: we can use a loop.

2/17 CS 114 - Fall 2024 Module 3, Section 1: Introducting while: counting

while loops

The simplest way to repeat is to something, over and over again, until the task is
complete. Examples:

To wash the dishes:
While there are dishes left, wash a dish.
To play chess:
While you have not yet won or lost, make a move.
To count down from n to zero:
While n is not zero, say n, then make n smaller.

def countdown(n: int) -> None:
"""Count down from n to zero."""
while n != 0:

print(n)
n = n - 1

print("Blastoff!")

3/17 CS 114 - Fall 2024 Module 3, Section 1: Introducting while: counting

Syntax of while

The syntax of while is similar to the syntax of if.

We write while, then a Boolean expression, then a colon, followed by a block of code.

The difference is in the interpretation; instead of possibly running the code once, it runs it
repeatedly, zero or more times, as long as the Boolean expression is True.

total = 0
n = 5
while n > 0:

total = total + n
n = n - 1

x = 1
while x < 1000:

print(x)
x = x * 2

Now that we have while loops, state diagrams become very important.

E
x. Use a state diagram to work through what each of these snippets does.

4/17 CS 114 - Fall 2024 Module 3, Section 1: Introducting while: counting

Working with while

Let’s turn one of these into a function →

E
xe

rc
is

e Following this pattern, write a function to return
the sum of the squares, e.g.
sum_squares(4) ⇒ 4*4 + 3*3 + 2*2 + 1*1 ⇒ 30

The factorial function, written n!, is the product of
the positive integers up to n.
For example, 5! = 5 × 4 × 3 × 2 × 1 = 120.

E
xe

rc
is

e

Write a function factorial(n) that calculates n!.

def sum_to(n: int) -> int:
"""Return the sum 1 + 2 + ... n.
Requires: n >= 0."""
total = 0
while n > 0:

total = total + n
n = n - 1

return total

check.expect("s3", sum_to(3), 3+2+1)
check.expect("s5", sum_to(5),

5+4+3+2+1)

E
xe

rc
is

e

Write a function sum_between(lo, hi) that returns the sum of integers from lo to hi.
For example, sum_between(12, 15) ⇒ 12 + 13 + 14 + 15 ⇒ 54

5/17 CS 114 - Fall 2024 Module 3, Section 1: Introducting while: counting

Not just counting: dividing out 2

So far, we have always been just counting down (or up). We could always tell in advance
how many times the loop would execute. This isn’t always the case.

I ask: “how many times can I divide a positive number by 2 until I get below 2?”
For example, 12 = 2 × 6, 6 = 2 × 3,
3 = 2 × 1.5. I can divide 12 three times.
And 27 = 2 × 13.5, 13.5 = 2 × 6.75,
6.75 = 2 × 3.375, 3.375 = 2 × 1.6875. I can
divide 27 four times.

Let’s write a function that does this.

What do we need to keep track of? At least:
1 how big is our number still

(12 → 6 → 3 → 1.5)
2 how many times we have divided so far

(0 → 1 → 2 → 3)

def count_twos(n: float) -> int:
"""Determine how many times n can be
divided by 2 until we get below 2."""
count = 0
while n >= 2:

count = count + 1
n = n / 2

return count

check.expect("C12", count_twos(12.0), 3)
check.expect("C27", count_twos(27.0), 4)

Example: Collatz Sequence

Starting from any positive integer n, I form a sequence of integers using this simple rule:

if n is even, the next value in the sequence is n // 2

if n is odd, the next value in the sequence is 3 * n + 1

For example, starting at 3:
3 is odd, so the next value is 10
10 is even, so the next value is 5
5 is odd, so the next value is 16
16 even, so the next value is 8
8 even, so the next value is 4
4 even, so the next value is 2
2 even, so the next value is 1
1 odd, so the next value is 4...

It seems that from any starting point, the
sequence always eventually reaches 1.

E
xe

rc
is

e Write a function
collatz_len(n: int) -> int that
determines how many steps the Collatz
sequence takes to get from n to 1.

We need to keep track of:
n, which will change
how many steps we’ve taken.

Example: Longest Collatz Sequence

Suppose we want to find the length of the longest Collatz sequence that starts below
some integer top. To understand the problem better, let’s try:
collatz_len(1) ⇒ 0

collatz_len(2) ⇒ 1

collatz_len(3) ⇒ 7

collatz_len(4) ⇒ 2

collatz_len(5) ⇒ 5

We need to keep track of
1 a counter of where we start,
2 the longest length we’ve seen so far.

E
xe

rc
is

e

Write a function longest_collatz(top)

that returns the length of the longest
Collatz sequence starting between 1
and top.
longest_collatz(5) ⇒ 7

E
xe

rc
is

e

Rework this function to write a function
longest_start(top) that instead it returns
the starting value of the longest
sequence.
longest_start(5) ⇒ 3

In this variant we also need to store what value we saw this longest sequence from.

Example: Factorizing

Every positive integer can be written as a product of prime factors.

For example:

12 = 2 · 2 · 3
60 = 2 · 2 · 3 · 5
77 = 7 · 11

It often helps to draw a “tree” to determine this. We keep dividing out the smallest number
possible, until we can’t divide it out any more. Then try the next smallest number.

We need to keep track of: 1 what is left, and 2 what we’re trying to divide by.

E
xe

rc
is

e Write a function factorize(n: int) -> int. It shall print the prime factors of n in
increasing order, and return an int indicating how many there are.
For example, factorize(60) should print 2, 2, 3, 5, and return 4.

8/17 CS 114 - Fall 2024 Module 3, Section 2: Other uses of while

Example: calculating square roots

To estimate the square root of a non-negative number n, we seek g such that g2 = n.

We’re going to start with a guess, then make it better, until it’s “good enough”.

We “want” g2 = n. Rewrite this as g =
n
g

.

If g is “too small”, then n
g is “too big”, and vice-versa.

The answer is guaranteed to be between g and n
g . Any number between them is a better

guess! Pick any number between them... how about right in the middle (the average).

So a better guess is g′ =
g+ n

g
2 . Repeatedly improve the guess until g2 is very close to n.

def sqrt(n: float) -> float:
g = 1.0 # initial guess; it may be bad, but it doesn't matter.
Don't start at the int 1; we promised to return a float!
while abs(g**2 - n) > 0.0001:

g = (g + n/g) / 2
return g

8/17 CS 114 - Fall 2024 Module 3, Section 2: Other uses of while

Example: calculating cos(x)

It turns out that the trigonometry function cos can be calculated using:

cos x =
x0

0!
− x2

2!
+ x4

4!
− x6

6!
...

(Note that 0! is 1. Often, including here, 00 = 1. Calculate n! using math.factorial.)

We want to stop when the next term is close
to zero. We need to keep track of:

1 the total,
2 a counter,
3 the sign (+ or −) E

xe
rc

is
e

Write a function cos(x) that uses a while

loop to calculate this value, stopping
when the next term is smaller than
0.0001.

Do not use any math functions except
math.factorial.

9/17 CS 114 - Fall 2024 Module 3, Section 2: Other uses of while

Functions on Functions

We can now write functions.
Next we are going to consider how to write functions that look at functions.

Here’s a plot of a function. I might ask:
1 For what values of x is this function

zero?
2 What is the area under the curve?
3 ...

We don’t want to re-write our code for each
function.

We want to write code that can answer such
questions for any function. We only need to
write such code once.
10/17 CS 114 - Fall 2024 Module 3, Section 3: Functions on Functions

A Function is a value

We are used to values of type int, float, str, and bool.

A function is also a value. We can assign it to a variable:
q = abs

q(-3) ⇒ 3

q(4) ⇒ 4

help(q)

This q is just as good as abs; in fact it’s exactly the same thing.

E
xe

rc
is

e

Consider carefully: what is the difference between p = abs(-3) and q = abs ?

The value of p comes from calling the function abs with argument -3. The function
returns the value 3, so p takes the value 3, which is an int.
Since we do not have brackets () after abs, we are not calling this function. The
value of q is abs itself.

11/17 CS 114 - Fall 2024 Module 3, Section 3: Functions on Functions

A Function as a parameter

We can assign a function to a variable; we can also use a function as an argument to a
function.

To annotate a parameter that is a function, we will write callable.
def call_n_times(n: int, f: callable) -> float:

"""Countdown from n to 0, print f for each value,
and return their total.
"""
total = 0.0
while n > 0:

print("f(", n, ") =>", f(n))
total = total + f(n)
n = n - 1

return total

Note that f is a parameter. But it’s also a function, and to call it, we need to write it with
brackets and argument(s).

12/17 CS 114 - Fall 2024 Module 3, Section 3: Functions on Functions

Example: first negative
E

xe
rc

is
e

Write a function first_negative(f: callable) -> int. It takes a callable, and returns
the smallest natural number for which f returns a negative number.

To have an example, we need to define a function to call first_negative with.
def trajectory(x: float) -> float:

"""Return the y coordinate on a particular trajectory at x."""
return - (x + 3.2) * (x - 4.6)

trajectory(0) > 0, trajectory(1) > 0, ..., trajectory(4) > 0, but trajectory(5) < 0.

So first_negative(trajectory) should return 5.

And consider math.cos. math.cos(0) > 0 math.cos(1) > 0, but math.cos(2) < 0.

So first_negative(math.cos) should return 2.

! Note: first_negative will not directly call trajectory or math.cos. It will call only f.

Examining a function

Let’s specify how many times to call a function, evenly spaced in some interval.
For an example, let’s define a function:
def parabola(x: float) -> float:

return x**2 + 1

Imagine we call it 4 times, with the first at x = 1.0, and
the last point is just before x = 3.0.
So print_interval(parabola, 1.0, 3.0, 4) should print:
1.0 -> 2.0
1.5 -> 3.25
2.0 -> 5.0
2.5 -> 7.25 1 2 3 4

2

4

6

8

A plot of f (x) = x2 + 1

E
xe

rc
is

e

Write the function print_interval(f, x0, x1, count) that makes count calls to the
function f, evenly spaced starting and x0 and ending just before x1.

14/17 CS 114 - Fall 2024 Module 3, Section 3: Functions on Functions

Approximating the area under a curve

The area of a rectangle is b × h where b and h are the
base and height.
We can estimate the area of any weird shape by
adding up a lot of little rectangles.

The area of f (x) = x2 + 1, using 4 bins between 1.0
and 3.0, is approximately:

2.0 × 0.5 + 3.25 × 0.5 + 5 × 0.5 + 7.25 × 0.5 = 8.75
1 2 3 4

2

4

6

8

A plot of f (x) = x2 + 1

E
xe

rc
is

e Write a function approx_area(f: callable, x0: float, x1: float, nbins: int) -> float.
The function returns an approximation of the area of between f and the x-axis,
between x0 and x1, using nbins bins. For example:
check.within("parabola", approx_area(parabola, 1.0, 3.0, 4), 8.75, 0.0001)
check.within("sin", approx_area(math.sin, 0.0, math.pi, 1000), 2.0, 0.0001)

Module summary

Use while loops with a counter to write code where we can directly see how many
times the loop will be executed.
Use while loops to write code where the end condition cannot be directly identified,
but depends on the calculation.
Write functions that have a function as a parameter.

Before we begin the next module:
Read and complete the exercises in module 3 of the online textbook, at
https://online.cs.uwaterloo.ca/
Complete the module 3 Review Quiz, due on Monday.

16/17 CS 114 - Fall 2024 Module 3, Section 4: Summary

https://online.cs.uwaterloo.ca/

	Introducting while: counting
	Other uses of while
	Functions on Functions
	Summary

