
Module 4: Strings and lists are
iterables

E
xe

rc
is

e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-04-start.ipynb

Discuss the previous module with your neighbour.

How do we write code to do something repeatedly?
How do we create functions that take a function as an argument?

1/36 CS 114 - Fall 2024 Module 4

Sequences

In mathematics, a sequence is a collection of items, in some order. Some examples:

The natural numbers: 0, 1, 2, 3, 4, ...
The prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23 ...
The Collatz sequence starting at 3 and ending at 1: 3, 10, 5, 16, 8, 4, 2, 1

In mathematics sequences are often infinitely long, but not always.

In programming we often work with sequences of finite length like [2, 4, 6, 0, 1].

2/36 CS 114 - Fall 2024 Module 4

Two kinds of iterables: strings and lists

A string such as "foobar" is a collection of characters, in some order:
the first item is 'f', the second is 'o', the third is another 'o', and so on.

"foobar" is like a sequence of letters.

Another way to have a collection of values is to make a list. In Python, we do this by
writing the values, separated by commas, inside square brackets [].

For example, [2, 4, 6, 0, 1] is a list that contains five integers:
the first item is 2, the second is 4, the third is 6, and so on.

[2, 4, 6, 0, 1] is like a sequence of integers.

3/36 CS 114 - Fall 2024 Module 4, Section 1: Strings and lists

Indexing

We can extract a single item from either of these iterables using indexing.

After a value we write square brackets around an integer called an index.
word = "foobar"
word[0] ⇒ "f"
word[1] ⇒ "o"
word[2] ⇒ "o"
word[3] ⇒ "b"
word[4] ⇒ "a"
word[5] ⇒ "r"

jvj = [2, 4, 6, 0, 1]
jvj[0] ⇒ 2
jvj[1] ⇒ 4
jvj[2] ⇒ 6
jvj[3] ⇒ 0
jvj[4] ⇒ 1

!
Notice: the first value is item 0, not item 1.
The last item is numbered 1 less than the length.
The index of a slot indicates how many slots there are before it.

4/36 CS 114 - Fall 2024 Module 4, Section 1: Strings and lists

Indexing

rhg = ["Everything", "is", "theoretically", "impossible,", "until", "it", "is", "done."]

What is rhg[2] ?
rhg[2] ⇒ "theoretically"

But notice: rhg[2] is a str, and we can also index a str.
rhg[2][0] ⇒ "t"

E
x. What is rhg[3][0] ? rhg[0][3] ?

E
x. How many different ways can you use indexing on rhg to get "y" ?

Evaluation Principle: if an expression evaluates to something that we could use in
a certain way, we can use the expression in that way.

5/36 CS 114 - Fall 2024 Module 4, Section 1: Strings and lists

Indexing

Evaluation Principle: if an expression evaluates to something that we could use in
a certain way, we can use the expression in that way.

E
xe

rc
is

e

mannie = [[12, 13, 14], [15, 16, 17], [18, 19, 20]]

Use indexing on mannie to get 17.

E
xe

rc
is

e wyoh = [["The", "five"], ["boxing", "wizards"], ["jump", "quickly"]]

Use indexing on wyoh to get "x".
Use indexing on wyoh to get "w".

6/36 CS 114 - Fall 2024 Module 4, Section 1: Strings and lists

Type annotations for lists

To state the type of a list, we say list, then inside square brackets, a single expression
indicating the type of the values that are in the list. Some examples:

The type of [2, 4, 6, 0, 1] is list[int], since each value is an int.
The type of [3.14, 2.718, 1.414, 2.0] is list[float], since each value is a float.
The type of ["we're", "all", "fine", "here"] is list[str], since each value is a str.
The type of [[2,3], [4,5,6], [7]] is list[list[int]], since each value is a list[int].

We could have a list that contains a mix of a few types, like [1, "word", 4, "you"], which
contains some int and some str. We’re going to avoid this; it’s usually a bad idea.

If we want to talk about a list where the values could be of any type, we can say list[any].

7/36 CS 114 - Fall 2024 Module 4, Section 1: Strings and lists

Length and walking using while

We can use the built-in function len to determine how many values an iterable contains:
len("foobar") ⇒ 6 len([2, 4, 6, 0, 1]) ⇒ 5

A while loop using len and a variable index can extract items one at a time:
i = 0
word = "foobar"
while i < len(word):

print(i, word[i])
i = i + 1

We see:
0 f
1 o
2 o
3 b
4 a
5 r

j = 0
jvj = [2, 4, 6, 0, 1]
while j < len(jvj):

print(j, jvj[j])
j = j + 1

We see:
0 2
1 4
2 6
3 0
4 1

8/36 CS 114 - Fall 2024 Module 4, Section 2: Iterating with while

Using a for loop

We often want to want to walk through an iterable.
Often we just need the values, not the counter.

To make it easier, Python provides the for loop.
It steps through the sequence, one item at a time, and sets a variable to each item.
word = "foobar"
for letter in word:

print(letter)
We see:
f
o
o
b
a
r

jvj = [2, 4, 6, 0, 1]
for number in jvj:

print(number)
We see:
2
4
6
0
1

The first time through the loop, the variable takes the first value in the iterable; the second
time through, it takes the second value, and so on.

9/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Syntax of for loops

word = "foobar"
for letter in word:

print(letter)

jvj = [2, 4, 6, 0, 1]
for number in jvj:

print(number)

The syntax of for has some similarities to the syntax of if and while, and some new parts.

We write:

1 the keyword for,
2 the name of a variable,
3 the keyword in,
4 a sequence,
5 a colon,
6 an indented block of code.

The block of code will run repeatedly, with the variable taking a value from the sequence
each time.
10/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Example: using for with if

We can use our tools together. Consider:
def drop_e(word: str) -> None:

"""Print all the letters in word except e."""
for letter in word:

if letter != 'e':
print(letter)

Then drop_e("djent") will print:
d

j

n

t

E
xe

rc
is

e Write a function count_e(word: str) -> int, that counts how many times 'e' appears
in word. For example,
check.expect("CE1", count_e("hello"), 1)
check.expect("CE2", count_e("able was I ere I saw Elba"), 3)

E
xe

rc
is

e Write a function count_n(target: float, vals: list[float]) -> int, that counts how
many times target appears in vals. For example,
check.expect("Cn1", count_n(3.1, [2.5, 6.5, 3.1, 1.0]), 1)
check.expect("Cn2", count_n(2.1, [2.5, 2.1, 3.1, 2.1, 1.0, 2.1]), 3)

11/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Checking if an iterable contains a value

It’s common to want to check if some value is contained, somewhere, inside a str or list.

For example, does [2,4,6,0,1] contain the number 6? By looping through the list, one item
at a time, we eventually find the target; so the list does contain a 6, and we can return
True. We don’t even need to look at the 0 and 1.

Does [2,4,6,0,1] contain the number 7? Again, we loop through, and reach the end of the
loop, without ever finding the target. So it does not contain it; we can return False.

E
xe

rc
is

e

Use a for loop to write a function
contains(target: int, collection: list[int]) -> bool. The function shall return True if
target appears in collection at least once.
check.expect("C6", contains(6, [2,4,6,0,1]), True)
check.expect("C7", contains(7, [2,4,6,0,1]), False)

Something neat: the same code works for a str:
check.expect("Cy", contains("y", "too many geese"), True)
check.expect("Cx", contains("x", "too many geese"), False)

12/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

The built-in operator in does the same thing

In the previous exercise you wrote code like this.
def contains(target: int, collection: list[int]) -> bool:

"""Return True if collection contains target, and False otherwise."""
for item in collection:

if item == target:
return True

return False

The in operator does the same!
6 in [2,4,6,0,1] ⇒ True

7 in [2,4,6,0,1] ⇒ False

"y" in "too many geese" ⇒ True

"x" in "too many geese" ⇒ False

To create a Boolean expression using in, we write:
1 a value,
2 in,
3 an iterable such as a str or list.

E
xe

rc
is

e

Without using for or if, write a 1-line function is_vowel(ch) that takes a string of
length 1, and determines if it is a vowel (one of a, e, i , o, u, A, E , I, O, U).

Note there are two ways to use the keyword in: by itself as above, or as part of a for loop.
13/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Algorithm design: Finding the largest
E

xe
rc

is
e

Find the largest value in this list:
[45,27,46,27,69,48,66,49,77,75,15,84,49,53,87,61,32,72,23,37,12,80,79,58,47,19,81]

E
xe

rc
is

e

Now think about your thinking: how did you find it?

Any answer to this question is an algorithm: an explanation of how to solve a problem.

As programmers, a big part of our work is

identifying/inventing the right algorithm, and
turning the algorithm into working code.

Let’s take our rough description and try to make it a bit more precise.

14/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Algorithm design: Finding the largest

We might describe our algorithm to find the largest item in a list as:

“Create a variable that stores the ‘largest item seen so far’; set it to the first item from
the list (or some other item).
Then look at each item in turn; if the new item is larger than the largest item seen so
far, update the largest item seen so far.”

Now we have a detailed algorithm; let’s turn it in to code.

(Note: there is a built-in function max. We want to understand the algorithm, so we are not
going to use it.)

15/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Algorithm design: Finding the largest
E

xe
rc

is
e

Write a function longest(items: list[str]) that returns the longest value in items.
check.expect("W", longest(["a", "bee", "was", "on", "a", "green", "leaf"]), "green")

Comparing the values directly with < doesn’t work; that gives us "was".

It takes only a very small change: before comparing, transform each value using len.

16/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Fancy indexing: slicing

So far we have only indexed an iterable of length L using an integer i : 0 ≤ i < |L|:
word = "foobar"
word[3] ⇒ "b"

jvj = [2, 4, 6, 0, 1]
jvj[0] ⇒ 2

This is enough for many purposes, but a useful trick is to take a slice of a str or list:

Using a negative index counts from the back.
[-1] gives the last item, [-2] the second last, and so on:

word[-1] ⇒ "r" word[-6] ⇒ "f" jvj[-2] ⇒ 0 jvj[-5] ⇒ 2

Using a single colon like [start:stop] where the first item is item start, stopping just
before stop. If either value is omitted, go to that end:
word[1:4] ⇒ "oob" word[4:] ⇒ "ar" jvj[:2] ⇒ [2,4] jvj[1:-1] ⇒ [4,6,0]

Using two colons like [start:stop:step], as above, but we skip values (and move
backwards with negative step).
word[::2] ⇒ "foa" word[1::2] ⇒ "obr" word[2:5:2] ⇒ "oa" word[::-1] ⇒ "raboof"

17/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Making iterables with +

We can “join” two numbers together using the + operator, making a new number:
2 + 37 + 3 ⇒ 42

We can use this same operator to join two or more strings, making a new string:
"Glory" + "To" + "Ukraine" ⇒ "GloryToUkraine"

Similarly, we can join lists together lists, making a new list:
[2, 4] + [6] + [0, 1] ⇒ [2, 4, 6, 0, 1]

E
xe

rc
is

e Write a function swap_ends(L) that takes a list[any] of length at least 2 and returns a
new list where the first and last value have been swapped.
swap_ends([4, 7, 5, 1, 100]) ⇒ [100, 7, 5, 1, 4]

H
in

t

Hint: L[1:-1] gives a slice that omits the first and last.

18/36 CS 114 - Fall 2024 Module 4, Section 3: Iterating with for

Mutation by index

We saw that we can extract items from a list using indexing, like:
jvj = [2, 4, 6, 0, 1]
jvj[0] ⇒ 2

We can also assign values to an item inside a list, using the same syntax:
jvj[1] = 100
print(jvj)
[2, 100, 6, 0, 1]

E
xe

rc
is

e What do suppose this code prints? p = [2, 3, 4]
q = p
p[0] = 10
print(q)

To mutate is to change. Above, we are changing the list jvj.
Carefully consider a state diagram. p and q are arrows pointing at the same thing!

We are not creating a new list, we are changing this one. We say p is an alias of q.

19/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Mutation and non-mutation

A working solution to swap_ends from earlier:
def swap_ends(L: list[any]) -> list[any]:

"""Return a list like L but with
first and last swapped."""
return [L[-1]] + L[1:-1] + [L[0]]

mylist = [4, 7, 5, 1, 100]
We call: swap_ends(mylist)
swap_ends(mylist) ⇒ [100, 7, 5, 1, 4]
mylist ⇒ [4, 7, 5, 1, 100]

Compare with this:
def swap_ends_mutate(L: list[any]) -> None:

"""Mutate L, swapping first and last."""
last = L[-1]
first = L[0]
L[0] = last
L[-1] = first

mylist = [4, 7, 5, 1, 100]
We call: swap_ends_mutate(mylist)
swap_ends_mutate(mylist) ⇒ None
mylist ⇒ [100, 7, 5, 1, 4]

Notice: the function returns a new list,
and mylist is unchanged.

Notice: the function returns None,
and mylist is mutated.

! A critically important difference: creating a new list vs mutating an existing list.

20/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Method to mutate a list to add an item: list.append

On some data types there are functions called methods that operate on the data
value itself. To use these, we write the name of the variable, a dot, then the name
of the method, with arguments.

The method list.append mutates the list we call it on, adding a single value at the end:
mylist = [2, 3, 4]
mylist.append(5)
mylist ⇒ [2, 3, 4, 5]

Often we can start with an empty list, then build an answer using list.append in a loop:
def countdown(n: int) -> list[int]:

"""Return a list counting down from n to 0."""
answer = []
while n >= 0:

answer.append(n)
n = n - 1

return answer

countdown(5) ⇒ [5, 4, 3, 2, 1, 0]

21/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Example: the Collatz sequence in a list
E

xe
rc

is
e

Modify the following code so it returns a list[int] containing the values, instead of
printing them.
def collatz(n: int) -> None:

"""Print the Collatz sequence from n to 1."""
while n != 1:

print(n)
if n % 2 == 0:

n = n // 2
else:

n = 3 * n + 1
print(n)

check.expect("C1", collatz(1), [1])
check.expect("C3", collatz(3), [3, 10, 5, 16, 8, 4, 2, 1])

H
in

t

Start with an empty list, and append something to it each time.

22/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Transforming a list
E

xe
rc

is
e

Replace the ... with only one line of code to make this function work:
def double_each(L: list[int]) -> list[int]:

"""Return a new list containing the double of each item from L."""
answer = []
for item in L:

...
return answer

check.expect("D0", double_each([2,4,6,0,1]), [4,8,12,0,2])

P
ro

ce
du

re To make a new list containing values transformed in some way, start with a new
empty list that will be the answer. Loop through the list, transform each value, and
append it to the answer.

23/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Method to mutate a list to remove an item: list.pop

We use the list.pop method to remove a single item from a list.
This function returns the value that was removed.

1 To remove the last item call it without an argument:
It returns the removed value.
jvj = [2, 4, 6, 0, 1]
jvj.pop() ⇒ 1 # Remove last item; list now contains [2, 4, 6, 0]
jvj.pop() ⇒ 0 # Remove last item; list now contains [2, 4, 6]
jvj.pop() ⇒ 6 # Remove last item; list now contains [2, 4]

2 To remove an item at a particular index, call it with the index as the argument:
jvj = [2, 4, 6, 0, 1]
jvj.pop(4) ⇒ 1 # Remove item number 4; list now contains [2, 4, 6, 0]
jvj.pop(2) ⇒ 6 # Remove item number 2; list now contains [2, 4, 0]
jvj.pop(0) ⇒ 2 # Remove item number 0; list now contains [4, 0]

24/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Method to mutate a list to remove an item: pop
E

xe
rc

is
e mike = [[["That"], ["Dinkum"], ["Thinkum"]],

[["High", "Operational"], ["Logical"]],
[["Multi", "Evaluating"], ["Supervisor"]],
[["Mark", "IV", "Mod", "L"], ["Holmes", "Four"]]]

What does mike.pop().pop().pop() evaluate to? How is mike mutated?

25/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

A tuple is an immutable list

Sometimes we want to have a list-like thing that never changes, containing certain types
of values.

For each person we might want to store:

their name, as a str

their year of birth, as an int

their magical possessions, as a list[str].

We always want to store exactly three things. So this is a good place to use a tuple.

We could use a list. But the point of a list is that we can change it—it’s mutable. Here it’s
not.
harry = ("Potter, Harry", 1980, ["Elder Wand", "Resurrection Stone", "Invis. Cloak"])
hermione = ("Granger, Hermione", 1979, ["Time Turner"])
frodo = ("Baggins, Frodo", 2968, ["One Ring", "Sting"])
sam = ("Gamgee, Samwise", 2980, [])

26/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Tuples are immutable lists

There are a few ways to create a tuple:

Write values separated by commas, inside round brackets like (1,2,3).
To create a tuple containing only one item, write a seemingly-useless comma after:
(3,)

Use the tuple function to convert an existing iterable:
tuple([2,4,6,0,1]) ⇒ (2, 4, 6, 0, 1)
tuple('foobar') ⇒ ('f', 'o', 'o', 'b', 'a', 'r')

Use arithmetic, as with lists:
(1,2,3) + (4,5) ⇒ (1, 2, 3, 4, 5)

27/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Working with tuple

Working with a tuple is like working with a list, except we cannot mutate.

Pretty much all we can do is:

extract items by indexing/slicing:
sam[0] ⇒ "Gamgee, Samwise"
frodo[1:] ⇒ (2968, ['One Ring', 'Sting'])

iterate using a for loop:
for thing in hermione:

print(thing)

We see:
Granger, Hermione
1979
['Time Turner']

We use a tuple mostly to store a fixed group of data. Our algorithms will mostly use lists.

28/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Type annotations for tuples

Generally we work with a tuple of some (short) fixed length.

The type of a tuple is tuple[...], replacing the ... with the types of the values in the tuple.

Consider:
harry = ("Potter, Harry", 1980, ["Elder Wand", "Resurrection Stone", "Invis. Cloak"])
hermione = ("Granger, Hermione", 1979, ["Time Turner"])
frodo = ("Baggins, Frodo", 2968, ["One Ring", "Sting"])
sam = ("Gamgee, Samwise", 2980, [])

Each of these contains exactly 3 values: a str, an int, and a list[str].
So each of these is a tuple[str, int, list[str]].

!

Notice the difference between the type of a list vs a tuple.
list has only one argument, indicating the type of every value it contains.
tuple has many arguments, one argument for each value it contains.

29/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Counting with range objects

We can already write code to count, using a while loop, like so:
count = 0
while count < 10:

print(count)
count = count + 1

This is OK, but we want to count often. There should be an easier way, and there is: range.
>>> help(range)
Help on class range in module builtins:

class range(object)
| range(stop) -> range object
| range(start, stop[, step]) -> range object
|
| Return an object that produces a sequence of integers from start (inclusive)
| to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
| start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
| These are exactly the valid indices for a list of 4 elements.
| When step is given, it specifies the increment (or decrement).

30/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Counting with range objects

Directly, a range value doesn’t do anything:
vals = range(4)
print(vals)
We see:
range(0,4)

It isn’t a list. But we can convert it to a list:
list(vals) ⇒ [0, 1, 2, 3]

I can imagine “every second number from 1000 to 2000,” without writing them all down.

That’s what range is for: range(1000, 2000, 2) represents
[1000, 1002, 1004, 1006, ..., 1998], compactly.

E
xe

rc
is

e

Fill in the blanks ... to create a range object that expands to the desired list:
list(range(...)) ⇒ [5,6,7,8]

list(range(...)) ⇒ [40, 45, 50, 55, 60, 65, 70]

list(range(...)) ⇒ [30, 27, 24, 21]

31/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

A for loop using range

We can convert a range object to a list... or iterate directly through it with a for loop.

These snippets do the same thing:

count = 0
while count < 10:

print(count)
count = count + 1

for count in range(10):
print(count)

32/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

A for loop using range
E

xe
rc

is
e

Replace the ... with only one line of code to make this function work:
def mutate_double_each(L: list[int]) -> None:

"""Mutate L so each value is doubled."""
for i in range(len(L)):

...
return None

thing1 = [2,4,6,0,1]
check.expect("double-r", mutate_double_each(thing1), None)
check.expect("double-m", thing1, [4,8,12,0,2])

Can we generalize? What if we wanted to change the items in some other way?

P
ro

ce
du

re To mutate a list L, transforming each item while keeping the items in the same order,
write for i in range(len(L)):. This uses i as an index.
Inside the loop, transform L[i] as needed.

33/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

A for loop inside a for loop

Suppose I want to create a table of data, like a times table.

I can represent a single value as a tuple[int, int, int]; for example, (6, 7, 42) can
represent “the product of 6 and 7 is 42”.

I want to make a list of such values, something like:
[(1,1,1), (1,2,2), (1,3,3),
(2,1,2), (2,2,4), (2,3,6),
(3,1,3), (3,2,6), (3,3,9)]

I need to create 3 values like (1, ...), then 3 values like (2, ...), then 3 values like
(3, ...).

Solution: def timestable(size: int) -> list[tuple[int, int, int]]:
answer = []
for row_n in range(1, size+1):

for column_n in range(1, size+1):
answer.append((row_n, column_n, row_n * column_n))

for the tuple: ^ ^
return answer

34/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

A for loop inside a for loop

def timestable(size: int) -> list[tuple[int, int, int]]:
answer = []
for row_n in range(1, size+1):

for column_n in range(1, size+1):
answer.append((row_n, column_n, row_n * column_n))

for the tuple: ^ ^
return answer

E
xe

rc
is

e

Using a similar pattern, write a function even_pairs(n: int) that returns a
list[tuple[int, int]] containing all the pairs of integers (x , y) where x + y is even.
check.expect("EP3", even_pairs(3), [(1,1), (1,3), (2, 2), (3,1), (3,3)])

(Remember, you can tell if an integer is even using the remainder operator:
13 % 2 ⇒ 1 but 14 % 2 ⇒ 0.

35/36 CS 114 - Fall 2024 Module 4, Section 4: List Mutation

Module summary

Use indexing like thing[3] to extract a single value from a str or list[...], or slicing
like thing[3:4:2] to get a collection of values.
Describe types with list[...] and tuple[..., ...].
Use for loops to walk through a str, list[...], tuple[..., ...], or range object.
Write code that mutates lists, and that refrains from mutating lists.
Use loops inside loops.

Before we begin the next module:
Read and complete the exercises in module 4 of the online textbook, at
https://online.cs.uwaterloo.ca/
Complete the module 4 Review Quiz, due on Monday.

36/36 CS 114 - Fall 2024 Module 4, Section 5: Summary

https://online.cs.uwaterloo.ca/

	Strings and lists
	Iterating with while
	Iterating with for
	List Mutation
	Summary

