Module 5: Sorting and Dictionaries

If you have not already, get prepared for class by downloading the start code:
lwget https://student.cs.uwaterloo.ca/~csll4/src/module-05-start.ipynb

Discuss the previous module with your neighbour.

@ What are the differences between a 1ist and a tuple?
@ What can we do with a range object?

CS 114 - Fall 2024 Module 5

Quick! Is 7256 in this list?
[5421, 4448, 8635, 2444, 3711, 3477, 4367, 1793, 5484, 2508, 9668, 3643, 4257, 9226,
6525, 2511, 6087, 6259, 3256, 1205, 7471, 4749, 7247, 7699, 5423, 4845, 4860, 6055]

Now | have similar data, but sorted in increasing order. Is 7256 in this list?

[1041, 1952, 2385, 4743, 4896, 5008, 5081, 5417, 5555, 5612, 5896, 5960, 6278, 6294,
6391, 6864, 7196, 7339, 7428, 7451, 7624, 7741, 8240, 8461, 9098, 9164, 9408, 9607]
In the first case, you have to look at each item, one by one.

You can’t be sure until you look at every item.

In the second case, as soon as you look at the 6391 you can see that it can’t be in first row.
You can then quickly discard the second half of the second row, and so on.
After looking at only a handful of values we can be confident it's not there.

Data can be much easier to work with if it ordered in some sensible way.
We want to learn to use tools that sort data.

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Sorting Algorithms

There are many interesting sorting algorithms.

To see some antique algorithms, with 1981 computer graphics, | encourage you to watch
Sorting Out Sorting on YouTube.

It's fun to think about sorting algorithms, and creating new ones is an active area of
research.

By default, Python uses a fairly new (2002) algorithm, Timsort, by Tim Peters.

But we don’t want to think about clever algorithms; we want to Do Science.
So we'll let people like Tim create clever algorithms, and we'll just use them.

CS 114 - Fall 2024 Module 5, Section 1: Sorting

https://www.youtube.com/watch?v=HnQMDkUFzh4
https://en.wikipedia.org/wiki/Timsort

Sorting tools: the sorted function

The built-in function sorted takes any iterable (a tist, a str, or something else), and

returns a new list containing the same values, in sorted order.

A list:

sorted([2,4,6,0,1]1) = [0, 1, 2, 4, 6]

A tuple gets turned into a list:

sorted(('In', 'a', 'hole', 'in', 'the', 'ground', 'there', 'lived', 'a', 'hobbit'))
= ['In', 'a', 'a', 'ground', 'hobbit', 'hole', 'in', 'lived', 'the', 'there']

A str is an iterable containing single characters; it is turned into a list:

sorted("Gandalf") = ['G"', 'a', 'a', 'd', 'f', 'Ll', 'n']

(The uppercase letters come before lowercase.)

It's important to note: sorted never mutates a list. It returns a new list with the
values.

CS 114 - Fall 2024 Module 5, Section 1: Sorting

The list.sort method

On an existing list, we can call the tist.sort method. This mutates the list and returns

None.

jvi =102, 4, 6, 0, 1]
jvj.sort() = None
jvi = [0, 1, 2, 4, 6]

gloin = ['He', 'looks', 'more', 'like', 'a', 'grocer', 'than', 'a', 'burglar!']
gloin.sort() = None
gloin = ['He', 'a',

'a', 'burglar!', 'grocer', 'like', 'looks', 'more', 'than']

You can only call the tist.sort method on a list; it won’t work on a str, tuple, etc, etc.

l It's important to note: list.sort always returns None. It only mutates the list!

CS 114 - Fall 2024 Module 5, Section 1: Sorting

What kinds of things can we sort?

Both tools, sorted and tist.sort, work only when the items can be compared using the <
operator (or other similar operators). If we try: sorted([3, "Bilbo"]) we get an error:

TypeError: '<' not supported between instances of 'str' and 'int'
Which is smaller: 3, or "Bilbo"? It's not clear what that would mean, so it’s an error.
But we can compare a lot of things using <.

We can compare two lists that contain comparable values: [2,6,5] < [3] = True.
So we can sort a list[list[int]]:

lol = [[3,7,4], [3,6], [1,8,5], [6], [I]

sorted(lol) = [[], [1, 8, 5], [3, 6], [3, 7, 4], [6]]

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Read The Fine Manual

Let’s read the documentation:
>>> help(sorted)
Help on built-in function sorted in module builtins:

sorted(iterable, /, *, key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

A flag is a parameter that is a bool.

If we set reverse=True, it will sort backwards:

sorted([2,4,6,0,1]) = [0, 1, 2, 4, 6]

sorted([2,4,6,0,1], reverse=True) = [6, 4, 2, 1, 0]

sorted("Gandalf") = ['G', 'a', 'a', 'd', 'f', 'l1', 'n']
sorted("Gandalf", reverse=True) = ['n', 'L', 'f', 'd', 'a', 'a', 'G']

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Some str methods

There are many methods defined on str.
s = "a man a plan a canal Panama"

@ str.split finds whitespace in a str, and returns a new tlist[str] of the words:

s.split() = ['a', 'man', 'a', 'plan', 'a', 'canal', 'Panama']
@ if we give it an argument, it splits on that instead of spaces:
s.split('n') = ['ama', ' a pla', ' a ca', 'al Pa', 'ama']
@ str.join takes a list[str], and returns a str, joining the values from the list using the
str.
"' join(['M', 'A', 'S', 'H']) = 'M#A%SxH'
"".join(['ma', 'ple', 'sy', 'rup'l) = ‘'maplesyrup’

@ str.find takes a str, and returns an int indicating at what index the argument
appears in the original str, or -1 if it does not appear:

Read help(str) to see more.

See that we do not call these like str.split and str.join.
We have a variable that is a str, and call the method on that variable.

8/30 CS 114 - Fall 2024 Module 5, Section 1: Sorting

The help says: “A custom key function can be supplied to customize the sort order.”
This means we can write something like sorted(mylist, key=f), Or mylist.sort(key=f).

key is an optional named parameter that is a callabte.

The system transforms each item using key, then puts the original values in order so that
these transformed values are sorted. E.g.: sort a list[str] using len as the key:

sorted(['cabbage', 'pear', 'avocado', ‘'dulse', 'mango', ‘'banana'l, key=len)
'cabbage’ 'pear' 'avocado' 'dulse’ 'mango’ 'banana’
7 4 7 5 5 6

Rearrange so lengths are ordered:

'pear’ 'dulse’ 'mango’ 'banana'’ 'cabbage' 'avocado'

4 5 5 6 7 7

= ['pear', 'dulse', 'mango', 'banana', 'cabbage', 'avocado']

Suppose we want to sort by units digit. For example, in 245, the units digit is 5; in 24601,
the units digit is 1. Since 1 < 5, once sorted 24601 should come somewhere before 245.

First step: write the key function.

Write a function units_digit(n: int) -> int, that returns the units digit of n.
check.expect("UD245", units_digit(245), 5)

check.expect("UD24601", units_digit(24601), 1)

check.expect("UD42", units_digit(42), 2)

(Work with non-negative integers for now, or test negatives carefully.)

That’s all we need. Now write: sorted([42, 245, 12, 7, 24601], key=units_digit)
= [24601, 42, 12, 245, 7]

Or. ..

mylist = [42, 245, 12, 7, 24601]
mylist.sort(key=units_digit) = None
mylist = [24601, 42, 12, 245, 7]

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Example: sorting tuptles

Here are some values:

harry = ("Potter, Harry", 1980, ["Elder Wand", "Resurrection Stone", "Invis. Cloak"l])
hermione = ("Granger, Hermione", 1979, ["Time Turner"])

frodo = ("Baggins, Frodo", 2968, ["One Ring", "Sting"])

sam = ("Gamgee, Samwise", 2980, [])

heroes = [harry, hermione, frodo, sam]

Write a function sort_by_item_count(characters: list[tuple[str, int, list[str]]]). It
mutates characters, S0 it is in increasing order by number of magical items.

For example, sort_by_item_count(heroes) mutates so that heroes
= [('Gamgee, Samwise',6 2980, [1),
('Granger, Hermione', 1979, ['Time Turner'l]),
('Baggins, Frodo', 2968, ['One Ring', 'Sting'l),
('Potter, Harry', 1980, ['Elder Wand', 'Resurrection Stone', 'Invis. Cloak'])]

Remember, you just need to write a helper function that turns harry into 3, hermione
into 1, and so on. Then use list.sort.

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Stable sorting

Earlier we used key=1en to sort foods:
sorted(['cabbage', 'pear', 'avocado', ‘'dulse', 'mango', 'banana'l, key=len)
= ['pear', 'dulse', 'mango', 'banana', 'cabbage', 'avocado']
Q: why does 'dulse’ come before 'mango'? Why does ' cabbage' come before 'avocado'?
A: our sorting is stable. That means that items that are “equal” stay in the same order.
Since len('dulse') and len('mango') are equal, they stay in the same order after sorting.
This means that if we first sort by “X”, and then sort by “Y”:

@ “Y” will define the groups

@ “X” will define the sorting within the groups.

half = sorted(['cabbage', 'pear', 'avocado', 'dulse', 'mango', 'banana'l)

half = ['avocado', 'banana', 'cabbage', 'dulse', 'mango', 'pear']l # alphabetically
sorted(half, key=len)

= ['pear', 'dulse', 'mango', 'banana', 'avocado', 'cabbage'] # by length

They are grouped by size, and each group is sorted alphabetically!

12/30 CS 114 - Fall 2024 Module 5, Section 1: Sorting

Stable sorting

The str.count method can be used to determine how many times a letter appears:
w = 'constitutionality'; w.count('t') = 4
w

'floccinaucinihilipilifications'; w.count('i') = 9

Write a function sort_q_count that takes a 1ist[str] and returns a new list containing
the same words, categorized by how many times the letter 'q' appears, and sorted

alphabetically within each category.
sort_g_count(['quote', 'dog', 'cat', 'albuquerque', 'saqgara', 'elephant’,
'quinquereme', ‘'unique', ‘'clique'])

= ['cat', 'dog', 'elephant',
'clique', 'quote', 'unique',
'albuquerque', 'quinquereme', 'saqqgara'l

CS 114 - Fall 2024 Module 5, Section 1: Sorting

Associating values with keys

We have two ways to usefully extract information from lists:

@ Use a for loop to walk through the list, one item at a time;
© use an index to extract the value in a particular location.

| want to store a certain amount of information, indexed by a key that might not be an int.

We want to associate a str describing a job with another str that is the name of the
person in that job:

@ "President” With "Volodymyr Zelensky"

@ "Minister of Defence" With "Rustem Umerov"

@ "Minister for Veterans Affairs" with "Yulia Laputina”

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Lists of pairs?

We could do this using a list, storing a tuple[str, str] for each job:
govt = [("President", "Volodymyr Zelensky"),

("Minister of Defence", "Rustem Umerov"),

("Minister for Veterans Affairs", "Yulia Laputina")]

| can write code to make this work:
def look_up(job: str, data: list[tuple[str, str]]) -> str:
"""Find the name associated with job in data."""

for row in data:
if row[0] == job:
return row[1]

look_up("President", govt) = "Volodymyr Zelensky"

This is OK, but inelegant. With more pairs in the list, it gets slower and slower.

This is not a good way to store this kind of information.
There must be a better way, and there is: dictionaries.

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Creating Dictionaries

A dictionary is a way to associate keys and values.

To create a dictionary: inside curly brackets, write key: value pairs, separated by commas.

For example:

govt = {

"President": "Volodymyr Zelensky",

"Minister of Defence": "Rustem Umerov",

"Minister for Veterans Affairs": "Yulia Laputina"

}

The empty dictionary is expressed as {}.

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Extracting Data from Dictionaries

There is some similarity to a list:

@ Get a single item by index, using a key as index:
govt["President"] = "Volodymyr Zelensky"
govt["Minister for Veterans Affairs"] = "Yulia Laputina"

@ Use a for loop to iterate through the keys only:
for job in govt:
print(job)
This prints:
President
Minister of Defence
Minister for Veterans Affairs

To see the associated values, use indexing on the keys: ## This prints:
for job in govt: Volodymyr Zelensky

. . Rustem Umerov
print(govt[job]) Yulia Laputina

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Type annotations for Dictionaries

With a list, the values in the list could have any type, but the index was always an int.
Using a dictionary, the values can still be any type, but the keys don’t have to be ints.

To describe the type of a dictionary we write dict[KeyType, ValueTypel, where KeyType and
ValueType represent the types of the keys and values.

Examples:

@ a = {3: 'trois', 4: 'quatre', 5: 'cing'} iS a dict[int, str]. Use: a[3] = 'trois’

@ b = {'trois': 3, 'quatre': 4, 'cing': 5} iS @ dict[str, int]. Use: b['trois'] = 3
@ c={(3, 4): 5.0,
(1, 1): 1.4141,
(2, 3): 3.606
}

Each key is a tuple[int, int], and each value is a float.
So this is a dict[tuple[int, int], float]. Use: c[(2,3)] = 3.606

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Key types

Many types can be used as keys, including int, but also float, and str. We can even use
a tuple as a key, provided it contains only types that can themselves be used as keys.

Using only int and str as keys will be enough for the majority of our code. Be aware that
other types can be used.

We can'’t use lists as keys; what can we use? Technically the only restriction is that the
type be hashable. We're not going to go into what that means. If we want to say “the keys
can be anything, as far as possible”, we will use any, even though it’s slightly imprecise.

Consider:

crazydict = {math.cos: "cosine",
math.sin: "sine",
abs: "absolute value"

}
What type is crazydict ?

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Keys and Values

Here is a example dict[int, int]:
data = {4: 41,

9: 39,

3: 32,

2: 25}

We will write two functions that take such a value and return an int.

Write a function sum_keys that returns the Write a function sum_values that returns
sum of the keys: the sum of the values:
check.expect ("SK", sum_keys(data), check.expect ("SV", sum_values(data),

4 +9 + 3 + 2) 41 + 39 + 32 + 25)

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Mutating dictionaries

Like lists, we can add, change, and remove items from a dictionary.
Suppose we have:
a = {3: 'trois', 4: 'quatre', 5: 'cing'}.

@ To add a new item, assign a new value using a new key as index:
a[24601] = 'Jean Valjean'
Now ais: {3: 'trois', 4: 'quatre', 5: 'cing', 24601: 'Jean Valjean'}.

@ To change an item, assign a new value, using a key that is already in the dictionary:
a[24601] = 'Monsieur Madeleine'
Now a is: {3: 'trois', 4: 'quatre', 5: 'cing', 24601: 'Monsieur Madeleine'}.

@ To remove a key : value pair, use the dict.pop method, using an existing key:
a.pop(4) = 'quatre'
Now a is: {3: 'trois', 5: 'cing', 24601: 'Monsieur Madeleine'}.

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Example: Reversing a dictionary

Write a function reverse_dictionary that takes a dict[int, str] and returns a new

dict[str, int] that has keys and values reversed.

For example:

reverse_dict({ 3: 'trois', 4:

= { 'trois': 3, 'quatre': 4,

‘quatre', 5:
‘cinq': 5 }

‘cing' })

N\

@ Can you find a dictionary d such that reverse dict(reverse dict(d))

d?

Notice: it's impossible for a

nats

dictionary to have the same key

more than once.

But the same value can appear as

many times as you like:

= {

'zero',
‘one',
'prime',
'prime',
'composite',
'prime',
'composite’,

oOURRWNRFRO

CS 114 - Fall 2024

Module 5, Section 2: Dictionaries

Sorting keys in a dictionary

When we introduced sorted on Slide 4, we said:

“The built-in function sorted takes any iterable”.

If we call sorted on a dict[str, int],
mydict = {'trois': 3, 'quatre': 4, 'cinq': 5,
sorted(mydict) = ?

Discuss: what do you expect it to return?

six': 6}

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Sorting keys in a dictionary

When we iterate through a dictionary, we see the keys.
mydict = {'trois': 3, 'quatre': 4, 'cing': 5, 'six': 6}

for item in mydict: ## We see:
print(item) trois
quatre
cinq
Six

So the keys are the “iterable” part of a dictionary.

The function sorted always returns a list[...], and here it will be list containing the keys.
sorted(mydict) = ['cing', 'quatre', 'six', 'trois']

So we can loop through the keys in sorted order. We still get the values by indexing:
for item in sorted(mydict):
print(item, mydict[item])

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Checking if a value is a key

With a list, we can us the in operator to check if something appears:
4 in [2, 4, 6, 0, 1] = True 3 in [2, 4, 6, 0, 1] = False

We can do the same with a dictionary, but it only checks the keys:

nats = {

'zero', 3 in nats = True

one’, ‘prime' in nats = False
prime',

'prime’,

'composite’,

'prime’,

'composite’,

oOUbhWNRERO

Write a function contains(d: dict[any, any], target: any) -> bool that determines if
any value in d is equal to target. E.qg.
contains(nats, 'prime') = True contains(nats, 'Optimus Prime') = False

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Missing keys

It is an error to try to get the access the value using a key that is not in the dictionary:
d={3: '"trois', 4: 'quatre', 5: 'cinq' }

d[3] = 'trois'

d[4] = 'quatre'

d[5] = 'cinqg'

d[6] # raises KeyError: 6

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Example: a Histogram

To count how many times each value appears in an iterable, consider this function:

def histogram(s: str) -> dict[str, int]:
"""Return a dictionary that counts

el OTE EEE EETEITIET RIS A 8. E Consider a trace of this call to histogram.
d =0 .
for ¢ in s: . .)
if ¢ not in d: Write a function plot_histogram that
dlc] =1 takes the value returned by histogram,
elseé[c] Cdle] 41 and prints it, in alphabetic order,
return d 4 indicating how many of each item there
7] ; inta:
h'= histagram(Ubrontosaurust) 3 are. E.g. plot_histogram(h) prints:
° a
~1 b
LU o}
00
rr
SS
t
uu

CS 114 - Fall 2024 Module 5, Section 2: Dictionaries

Module summary

@ Use the built-in sorting tools (sorted and list.sort) to sort values, including the
reverse= flag and key= parameter.

@ Create and mutate dictionaries, describe their types using dict[..., ...], iterate
through them, check if items are present as keys.

Before we begin the next module:

@ Read and complete the exercises in module 5 of the online textbook, at
https://online.cs.uwaterloo.ca/

@ Complete the module 5 Review Quiz, due on Monday.

CS 114 - Fall 2024 Module 5, Section 3: Summary

https://online.cs.uwaterloo.ca/

Extra Practice

% Write a function divisors(n). It returns a list containing all the positive integers that n

is divisible by. For example,
check.expect("D10", divisors(10), [1,2,5,10])
check.expect("D7", divisors(7), [1,7])

(Hint: do not use a dictionary for this exercise. It won’t help.)

Write a function divisor_dict(n). It takes positive int, and returns a
dict[int, list[int]], Where the keys are the numbers from 1 to n, and the associated
value is a list containing all the numbers that divide that number.

CS 114 - Fall 2024 Module 5, Section 3: Summary

Extra Practice

Recall the Collatz sequence: if nis a number in the sequence, the next number is given by
n/2 when nis even, and by 3n+ 1 when nis odd. Recall that this sequence always seems
to reach 1.

Write a function collatz dict(n). It returns a dict[int,int] where each key is a value
in the Collatz sequence, and the value is the next value in the sequence. It should

contain all the values encountered when starting at n. For example:
check.expect("C8", collatz_dict(8), {8:4, 4: 2, 2: 1})
check.expect("C3", collatz_dict(3),

{3: 10, 10: 5, 5: 16, 16: 8, 8: 4, 4: 2, 2: 1})

	Sorting
	Dictionaries
	Summary

