
Module 8: Classes
E

xe
rc

is
e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-08-start.ipynb

1/24 CS 114 - Fall 2024 Module 8

Storing complex data

We now have several ways to store data:

We use lists, especially to store data of variable length, all of the same type;
we use dictionaries, to store keys and associated values;
we use tuples to store fixed-size unchangeable data.

Consider: I want to store information about a “country”. I want to store 3 things: the
continent (a str), the name of the leader (a str), and the population (an int). How can
we do it?

2/24 CS 114 - Fall 2024 Module 8, Section 1: The Data Representation Problem

Storing complex data as a list

canada = ["North America", "Trudeau", 38526760]
india = ["Asia", "Modi", 1352642280]

� We can change the values.
� Nothing helps us remember what kind of things we’re supposed to be storing.
� Nothing helps us avoid corrupting the data, or even keeping it the right size; we can

add/remove values with .append and .pop.
� How do I annotate this type?

3/24 CS 114 - Fall 2024 Module 8, Section 1: The Data Representation Problem

Storing complex data as a tuple

canada = ("North America", "Trudeau", 38526760)
india = ("Asia", "Modi", 1352642280)

� Nothing helps us remember what kind of things we’re supposed to be storing.
� The size is fixed, so we can’t accidentally add or remove data.
� We can’t change anything at all!
� How do I annotate this type? Like tuple[str, str, int]. That’s not bad.

4/24 CS 114 - Fall 2024 Module 8, Section 1: The Data Representation Problem

Storing complex data as a dict

canada = {
"continent": "North America",
"leader": "Trudeau",
"population": 38526760

}
india = {

"continent": "Asia",
"leader": "Modi",
"population": 1352642280

}

� The named fields help us remember what each piece is for.
� We can still change the values.
� Nothing helps us avoid corrupting the data, or even keeping it the right size.
� How do I annotate this type?

5/24 CS 114 - Fall 2024 Module 8, Section 1: The Data Representation Problem

Storing complex data: lots of reasonable options

It can be quite appropriate to use a list, a dict, or a tuple to store data. Different
structures are better in different circumstances.

Often, the tools we have just summarized are a good choice.

A big part of programming is figuring out how to store whatever it is you need to store.

list? dict? tuple? A combination? Something else?

I can’t give you simple rules of how to choose which. You’ll develop intuition with
experience. CS115/CS135 will help; see especially CS234 “Data Types and Structures” or
CS240 “Data Structures and Data Management” (if you become a CS major).

For now, we will see a taste of an alternative that gives us certain neat features: classes.

6/24 CS 114 - Fall 2024 Module 8, Section 1: The Data Representation Problem

Classes

A class is the way we create a new type.

Write the keyword class followed by the name of the class, a colon, and a block of code.
class Country:

"""Describe a country."""
continent: str
leader: str
population: int

We use a docstring and annotations to help other programmers see what this type is for.

This does nothing. It just documents our class, indicating that our Country is supposed to
store these three attributes with these types.

...It means we can call help(Country) and get a message that is at least slightly useful.

! Write a docstring and attribute annotations for every class you create!

7/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Storing data in a class

The rest of what we do in a class statement is define functions.

Functions defined inside a class are called methods.

The first method we need to create is a magic method that creates an object of this type.

Here’s what it looks like for our Country class:
class Country:

def __init__(self, continent: str, leader: str, population: int) -> None:
self.continent = continent
self.leader = leader
self.population = population

We don’t need use the same names for the parameters of __init__ as for the attributes.
But we can.

8/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Storing data in a class

class Country:
def __init__(self, continent: str, leader: str, population: int) -> None:

self.continent = continent
self.leader = leader
self.population = population

In classes, following tradition, we will always name the first parameter self.

This first parameter refers to the object we are working in; for __init__, it refers to a new
object that we are creating. When we call the class, it creates a new object for self, then
calls this __init__ function.
canada = Country("North America", "Trudeau", 36524723)

Notice only 3 parameters. The first parameter, self, is created automatically.

This code assigns values to certain attributes of the newly created object. So now:
canada.continent ⇒ "North America"
canada.population ⇒ 36524723

It’s kinda like a dict[str, any], using a different syntax.

9/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Documenting and annotating a class

1 Write a docstring for the class.
2 Annotate all the attributes, by listing each followed by colon, space, and the type.
3 Don’t annotate self. Annotate the rest of the parameters.
4 The __init__ method always returns None.
5 Magic methods have implicit purpose, so we may omit the docstring for them.

class Country:
"""Describe a country."""
continent: str
leader: str
population: int
def __init__(self, continent: str, leader: str, population: int) -> None:

self.continent = continent
self.leader = leader
self.population = population

10/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Practice: Creating a class

class Country:
"""Describe a country."""
continent: str
leader: str
population: int
def __init__(self, continent: str, leader: str, population: int) -> None:

self.continent = continent
self.leader = leader
self.population = population

E
xe

rc
is

e

Following this model, create a fully-documented class Hero that stores a name, year,
and items. For example:
frodo = Hero("Baggins, Frodo", 2968, ["One Ring", "Sting"])
check.expect("attributes", frodo.name, "Baggins, Frodo")
check.expect("attributes", frodo.year, 2968)
check.expect("attributes", frodo.items, ['One Ring', 'Sting'])

11/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Storing complex data as a Country

Now that we have defined a class, how is it to use?
canada = Country("North America", "Trudeau", 36524723)

� We can change the values:
canada.leader = 'Mr. Bean'

canada.population += 1

� The class definition helps us remember what kind of things we’re supposed to be
storing.

� It is still possible to add or remove attributes from the class. But we’re quite unlikely to
use such tools by accident.

� How do I annotate this type? Like Country.

12/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

__repr__

Printing an object so far gives something useless:
print(canada)
<__main__.Country object at 0x101247c50>

If we add a magic method __repr__(self), it will call that function and print what it returns.
def __repr__(self) -> str:

return ("CNT: " + self.continent + "; L: " + self.leader
+ "; POP: " + str(self.population))

print(canada)
CNT: North America; L: Trudeau; POP: 36524723
str(canada) ⇒ "CNT: North America; L: Trudeau; POP: 36524723"

__repr__ can’t have any argument except self, which we don’t annotate. It must return str.

E
xe

rc
is

e

Add the __repr__ method to your Hero class so it displays name and birthyear.
check.expect("repr:", str(frodo), 'Baggins, Frodo, born 2968')

13/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Aliases

We can have lists which are aliases:
L = [2,4,6,0,1]
M = L
M[2] = 7
L[2] is also 7.

Similarly, we have have objects which are
aliases:
canada = Country("North America",

"Trudeau", 36524723)
cold_place = canada
cold_place.population = 7
canada.population ⇒ 7

With lists you can avoid aliasing by using M = L.copy(). The list.copy method creates a
new list that contains the same values.

But by default we don’t have a .copy method. We can do it manually:
cold_place = Country(canada.continent, canada.leader, canada.population)
cold_place.population = 7
canada.population is unchanged.

14/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Equality

Consider: I create two Country objects, in the same way:
canada = Country("North America", "Trudeau", 36524723)
cold_place = Country("North America", "Trudeau", 36524723)

They should be identical. But nonetheless: canada == cold_place ⇒ False.

Since canada and cold_place seem identical, we want they to be “equal” according to the ==

operator. The magic method __eq__(self, other) defines what == means.
def __eq__(self, other: any) -> bool:

return (isinstance(other, Country)
and self.continent == other.continent
and self.leader == other.leader
and self.population == other.population)

Now canada == cold_place is equivalent to canada.__eq__(cold_place), and this will return
True.

15/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Equality

Let’s look at this code carefully:
def __eq__(self, other: any) -> bool:

return (isinstance(other, Country)
and self.continent == other.continent
and self.leader == other.leader
and self.population == other.population)

The built-in function isinstance(val, t) returns True if val is derived from class t.
The rest of the code just checks that the attributes of the two objects are the same.

E
xe

rc
is

e

Add the __eq__ method to your Hero class so people born in the same year are equal:
hermione = Hero("Granger, Hermione", 1979, ["Time Turner"])
check.expect("==", hermione == Hero("Doe, John", 1979, []), True)
check.expect("==", hermione == Hero("Granger, Hermione", 1980, ["Time Turner"]),

False)
check.expect("==", hermione == 1979, False)

16/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Practice
E

xe
rc

is
e

Write a function make_countries that takes three lists of equal length and returns a
list[Country].
check.expect("countries",

make_countries(["Asia", "North America", "Europe", "Asia"],
["Modi", "Trudeau", "Macron", "Yoon"],
[1339491960, 36524723, 67396432, 51745000]),

[Country("Asia", "Modi", 1339491960),
Country("North America", "Trudeau", 36524723),
Country("Europe", "Macron", 67396432),
Country("Asia", "Yoon", 51745000)])

We couldn’t do this exercise before we created the __eq__ magic method... Why not?

The check.expect function needs to be able to check equality! The
Country("North America", "Trudeau", 36524723) created by make_countries won’t be the exact
same one we wrote inside our test!

17/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Magic Methods for Many Purposes

Magic methods are how all sorts of things work.

We will never call magic methods directly, but any time we see code that works with
objects, we will need to look at them to understand what it does.

We have seen that a == b calls a.__eq__(b). That is, it calls the __eq__ magic method on a,
using a for self, and b for other.

We can define magic methods to specify behaviour for all operators:

__add__ defines the behaviour of +, __sub__ of -, __mul__ of *, __floordiv__ of //, etc.
__getitem__ defines the behaviour of slicing; see help(list.__getitem__). And so on.
Python is fundamentally an object oriented language; all our types are “classes”.

18/24 CS 114 - Fall 2024 Module 8, Section 2: Classes and Magic Methods

Non-magic methods

So far, we have only define magic methods: methods that define how Python internals
work for objects of our class.

We’ve also seen ordinary (non-magic) methods for lots of types:

list.pop is a method that drops a value from the list:
L = [2,4,6,0,1]

L.pop(1) ⇒ 4

L ⇒ [2,6,0,1]

str.split is a method that returns a list[str] containing the words in the str:
s = "give peas a chance"

s.split() ⇒ ['give', 'peas', 'a', 'chance']

To create these, the list class would have a line like def pop(self, index):, and the str

class would have a line like def split(self):.

19/24 CS 114 - Fall 2024 Module 8, Section 3: Non-magic Methods

Non-magic methods

We define a non-magic method in the same way as a magic method.

Usefully it might:

mutate the object, like list.pop;
have a side effect like printing a message, reading/writing a file, drawing a plot, etc.;
return a value of some kind, like str.split.

Consider this method for our Country class:
class Country:

def election(self, winner: str) -> None:
"""Update self when winner wins, and print a message."""
print("Election Results:")
if self.leader == winner:

print(self.leader + " re-elected")
else:

print(winner + " replaces " + self.leader)
self.leader = winner

20/24 CS 114 - Fall 2024 Module 8, Section 3: Non-magic Methods

Non-magic methods

class Country:
def election(self, winner: str) -> None:

"""Update self when winner wins, and print a message."""
print("Election Results:")
if self.leader == winner:

print(self.leader + " re-elected")
else:

print(winner + " replaces " + self.leader)
self.leader = winner

Suppose we have the following:
usa = Country("North America", "Trump", 329531886)
usa.leader ⇒ "Trump"
usa.election("Biden") # The method mutates, prints, and returns None.
usa.leader ⇒ "Biden"

usa.election("Biden") call the Country.election method, with self being the usa object, and
winner being "Biden".

21/24 CS 114 - Fall 2024 Module 8, Section 3: Non-magic Methods

Non-magic method

class Country:
def election(self, winner: str) -> None:

"""Update self when winner wins, and print a message."""
print("Election Results:")
if self.leader == winner:

print(self.leader + " re-elected")
else:

print(winner + " replaces " + self.leader)
self.leader = winner

E
xe

rc
is

e Using this code as a model, add to your Hero class a method take(item) that takes a
str, mutates the object to add item to the list of items it holds, and returns None.
hermione = Hero("Granger, Hermione", 1979, ["Time Turner"])
check.expect("take returns None", hermione.take("Horcrux"), None)
check.expect("items was mutated", hermione.items, ['Time Turner', 'Horcrux'])

22/24 CS 114 - Fall 2024 Module 8, Section 3: Non-magic Methods

Exercise: list[Country]
E

xe
rc

is
e

Write a function reslice. It takes a list[Country] and returns a
tuple[list[str], list[str], list[int]], containing the continents, the leaders, and
the populations.
(This is like the inverse of make_countries we wrote earlier.)
check.expect("reslice",

reslice([Country("Asia", "Modi", 1339491960),
Country("North America", "Trudeau", 36524723),
Country("Europe", "Macron", 67396432),
Country("Asia", "Yoon", 51745000)]),

(["Asia", "North America", "Europe", "Asia"],
["Modi", "Trudeau", "Macron", "Yoon"],
[1339491960, 36524723, 67396432, 51745000]))

23/24 CS 114 - Fall 2024 Module 8, Section 3: Non-magic Methods

Module summary

Understand how to group information into a single object as a class.
Know how to document and annotate classes.
Be able to create magic methods to initialize objects, and to define the behaviour of
operators such as == and +.
Be able to create (non-magic) methods to add capabilities to classes.

Before we begin the next module:
Read and complete the exercises in module 8 of the online textbook, at
https://online.cs.uwaterloo.ca/
Complete the module 8 Review Quiz, due on Monday.

24/24 CS 114 - Fall 2024 Module 8, Section 4: Summary

https://online.cs.uwaterloo.ca/

	The Data Representation Problem
	Classes and Magic Methods
	Non-magic Methods
	Summary

