
Module 9: Recursion and Fractals
E

xe
rc

is
e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-09-start.ipynb

1/39 CS 114 - Fall 2024 Module 9, Section 1: Recursion

What is Recursion?

Simply put, recursion is any thing that refers to itself.

Some examples:

This sentence is recursive, since it is talks about itself.
Recursive acronyms: “GNU’s Not Unix!”, and the mutually-recursive pair,
“Hird of Unix-Replacing Daemons”, “Hurd of Interfaces Representing Depth.”
Many fractals, including the Sierpiński Triangle:

Recursion is an important concept; we need a deep understanding of what it can do.

There are some nice examples on Wikipedia.
2/39 CS 114 - Fall 2024 Module 9, Section 1: Recursion

https://en.wikipedia.org/wiki/Recursion

Fractals

One of the nicest place to see recursion is in fractals. A fractal is a thing that has
self-similar “copies” of itself in itself.

https://en.wikipedia.org/wiki/Fractal

3/39 CS 114 - Fall 2024 Module 9, Section 2: Fractals

https://en.wikipedia.org/wiki/Fractal

Canvas

We want to draw fractals. So we need a drawing tool.

We will use the ipycanvas module. It gives us a “canvas” that we can paint on.

See the demo in the module start code.

4/39 CS 114 - Fall 2024 Module 9, Section 2: Fractals

A Recursive Fractal: the Sierpiński triangle

This is an image of the fractal we are aiming to create:

To see a detailed walkthrough of creating it, run the following to get a notebook:

!wget https://student.cs.uwaterloo.ca/~cs114/src/sierpinski.ipynb

(Run this line from the starter code.)

5/39 CS 114 - Fall 2024 Module 9, Section 2: Fractals

Sierpiński Carpet Fractal

A Sierpiński carpet is a square fractal that is divided into 9 smaller squares: the middle is
simply filled in, and each of the outer 8 squares is a smaller Sierpiński carpet, of depth
one less. Like so:

depth=0 depth=1 depth=2 depth=3

E
xe

rc
is

e Look at the starter code.
Complete the function carpet(canvas, x0, y0, width, depth) so it draws a carpet like
those above.

6/39 CS 114 - Fall 2024 Module 9, Section 2: Fractals

A Recursive Data Structure: Trees

There are many situations where we need to a data type that contains items of the same
kind. Here are just a few examples:

In computers, a directory may contain other directories, which may in turn contain
other directories.
A person may have descendants, who are themselves people, and may in turn have
descendants.
In linguistics, a clause may contain other clauses, and may in turn contain clauses.
There are substantial applications in astronomy (https://arxiv.org/abs/0801.2004) and
particle physics (https://arxiv.org/abs/1608.04772).

7/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

https://arxiv.org/abs/0801.2004
https://arxiv.org/abs/1608.04772

Tree Terminology

a

b

dc

gfe

root

children of b

internal nodes

leaveschildren of c

c is a sibling of d , and d is a sibling of c. e, f , and g are siblings of each other.

a is a parent of b. b is a parent of c and d . c is a parent of e, f , and g.

A node with no children is a leaf.
8/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Family Tree

Consider a tree representing a family: a person and all their descendants:

Hoster

Catelyn

RickonBranAryaSansaRobb

EdmureLysa

Robin

For clarity, let’s use a class.

It needs to store the person’s name,
and a representation of the family of each of their children.

class Family:
"""Store information about the Family of a person."""
name: str

children: list['Family']

9/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Family class

This class does not need to do anything tricky. It literally just stores the name as a str, and
the children as a list[Family]. (Add a __repr__ function to make it pretty.)

Here is all we need:
class Family:

"""Store information about the Family of a person."""
name: str
children: list['Family']

def __init__(self, name: str, children: list['Family']) -> None:
self.name = name
self.children = children

def __repr__(self) -> str:
return "Family('" + self.name + "', " + str(self.children) + ")"

10/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Family class

To create a Family, we call Family with 2 args: a str for name, and a list[Family] for children.

Hoster

Catelyn

RickonBranAryaSansaRobb

EdmureLysa

Robin

tully = Family('Hoster',
[Family('Lysa',

[Family('Robin', [])]),
Family('Edmure', []),
Family('Catelyn',

[Family('Robb', []),
Family('Sansa', []),
Family('Arya', []),
Family('Bran', []),
Family('Rickon', [])])

])

Look carefully; notice for example that Robin has 0 children, so an empty list; Lysa has
one child, so that list contains only one Family.

Here a Family is a “leaf” if it has no children.
So in this example the leaves are Robin, Edmure, Robb, Sansa, Arya, Bran, Rickon.

11/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Example: Counting people in a Family

To count the number of people in a Family, there are 2 kinds of people to consider:

The person whose name is name, and
All the people in all the Family values in children.

Let’s carefully think about how to count how many people are in a Family.
def count_members(fam: Family) -> int:

"""Return the number of people in fam."""
total = 0
for child in fam.children:

fam.children is a list[Family], so child is a Family.
total = total + count_members(child)

...and one more for the person whose name is fam.name.
total = total + 1
return total

And sure enough it works:
check.expect('count tully', count_members(tully), 10)

12/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Practice: Flattening a tree

def count_members(fam: Family) -> int:
"""Return the number of people in fam."""
total = 0
for child in fam.children:

fam.children is a list[Family], so child is a Family.
total = total + count_members(child)

...and one more for the person whose name is fam.name.
total = total + 1
return total

E
xe

rc
is

e Using this as a model, write a function list_names(fam: Family) -> list[str].
It returns a list[str] containing all the names of everyone in fam, in alphabetic order.
list_names(tully)
⇒ ['Arya', 'Bran', 'Catelyn', 'Edmure', 'Hoster', 'Lysa', 'Rickon', 'Robb',

'Robin', 'Sansa']

H
in

t

Collect the names in answer, then use return sorted(answer) so they’re in order.

13/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Working with Leaves

Recall that a “leaf” is a node that has no children.

In our representation, if f is a Family, it is a leaf if f.children == [].

E
xe

rc
is

e Write a function family_leaves that takes a Family and returns the number of “leaves”,
that is, how many people with 0 children.
check.expect("CLft", family_leaves(tully), 7)

H
in

t

Consider: what must family_leaves(Family('Robin', [])) return?

E
xe

rc
is

e Write a function leaf_names that takes a Family and returns a list[str] containing the
names of all the leaves, in alphabetic order.
leaf_names(tully) ⇒ ['Arya', 'Bran', 'Edmure', 'Rickon', 'Robb', 'Robin', 'Sansa']

14/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Leaf-Labelled Trees

In the Family class, the name attribute stores some information on each node. We call it a
“label”.

A leaf-labelled tree is a special kind of tree where we have labels only on the leaves.

If we don’t have the label, a node is storing only a list of... more trees. In that case we can
do without the class, and just use a list. We call the result a leaf-labelled tree.

Let’s just use a int as the label of each leaf. We will define an LLT:

an LLT is either a int, or a list[LLT].

In Python we can write this as:
LLT = int | list['LLT']

The “|”, which we call a “pipe”, means something like “or”.

(We should also say that it is not empty.)

15/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Leaf-Labelled Tree Examples

Here are some leaf-labelled trees as code, and as diagrams.

Consider how each satisfies the definition:
LLT = int | list['LLT']

...and also how the diagram corresponds to the code.
2

2
[2]

2

[5, 7]

5 7

[2, [5, 7], 3]

2

5 7

3

[2, [3, [5, 7, 11]]]

2

3

5 7 11

In the first example, the root is a leaf.
In the second example, the root has one child; that child is a leaf.

16/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Distinguish node types

Recall the definition of a LLT:
LLT = int | list['LLT']

In code, we will usually need to treat differently the different “kinds” of LLT. We will write:
if isinstance(t, int): ...

if isinstance(t, list): ...

Then we can treat leaf nodes differently from non-leaf nodes.

17/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Example: Counting leaves in a LLT

Keeping in mind that a LLT is either an int or a list[LLT], we want to complete this function:
def count_leaves(t: LLT) -> int:

"""Count how many leaves are in t."""

If t is an int, how many leaves are there? 1. That’s our base case. We can write the
code:

if isinstance(t, int):
return 1

If t is not an int, it’s a list[LLT].
Each item in t is a LLT; we want to know the total number of leaves.
Determine how many are in each child; add them up.

elif isinstance(t, list): # (We could just use `else`.)
total = 0
for child in t:

total = total + count_leaves(child)
return total

It works: count_leaves([2,3, [4], [2,[6,7]]]) ⇒ 6

18/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Practice with LLT

def count_leaves(t: LLT) -> int:
"""Count how many leaves are in t."""
if isinstance(t, int):

return 1
elif isinstance(t, list): # (We could just use `else`.)

total = 0
for child in t:

total = total + count_leaves(child)
return total

E
xe

rc
is

e

Using this code as a model, write a function sum_leaves(t: LLT) -> int that takes a LLT

and returns the sum of all the labels. For example,
sum_leaves([2, 3, [4], [2, [6, 7]]]) ⇒ 24

Consider the same questions:
What to do if it’s an int?
What to do if it’s a list[LLT]?

19/39 CS 114 - Fall 2024 Module 9, Section 3: Trees

Implementing Loops with Recursion

So far we’ve only used recursion to work with tree-like things.

Recursion is particularly useful with trees, but we can also use it to do other computations.

In fact, it’s in principle possible to do any calculation without loops, using only recursion.

Let’s see how.

20/39 CS 114 - Fall 2024 Module 9, Section 4: Implementing Loops with Recursion

Implementing Loops with Recursion: example: factorial

The factorial function, written n!, takes a natural number and returns the product of
numbers from n down to 1. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120.

But 4! = 4 × 3 × 2 × 1. So notice that 5! = 5 × (4 × 3 × 2 × 1) = 5 × 4!.

We can generalize this, and define this function recursively using mathematical language:

n! =

{
1 if n = 1
n × (n − 1)! otherwise

When n is 1, we don’t need to do any calculation; the answer is just 1. This is the base
case.

Otherwise, we do a calculation that includes a call to the same function with different
parameters (specifically, n is smaller by 1). This is the recursive case.

21/39 CS 114 - Fall 2024 Module 9, Section 4: Implementing Loops with Recursion

Implementing Loops with Recursion: example: factorial

We take this mathematical definition:

n! =

{
1 if n = 1
n × (n − 1)! otherwise

... and directly translate it into Python code:
def factorial(n: int) -> int:

"""Return n!"""
if n == 1:

return 1
else:

return n * factorial(n - 1)

Compare this to a version written using a while loop:

def factorial(n: int) -> int:
"""Return n!"""
product = 1
while n != 1:

product = n * product
n = n - 1

return product

Both stop when n == 1

Both move n closer to the base by
“replacing” n with n - 1.

We can always do something like this; any
code written with a loop we can rewrite to
use only recursion.

22/39 CS 114 - Fall 2024 Module 9, Section 4: Implementing Loops with Recursion

Example: countdown

I can read this code to mean “to calculate n!, find (n − 1)! and multiply by n.”
def factorial(n: int) -> int:

"""Return n!"""
if n == 1:

return 1
else:

return n * factorial(n - 1)

In a similar style, I can say: “to count down from n to zero, print n, and then count down
from n − 1 to zero.”

E
xe

rc
is

e Without a for or while loop, write a function countdown_rec(n: int) that prints all the
numbers from n down to 1. For example, countdown_rec(5) should print 5, 4, 3, 2, 1, on
separate lines.

That is, rewrite this countdown without a loop: def countdown(n: int) -> None:
while n != 0:

print(n)
n = n - 1

23/39 CS 114 - Fall 2024 Module 9, Section 4: Implementing Loops with Recursion

Implementing Loops with Recursion

Recall: you can create a list that contains the contents of two other lists, using +.

For example, [2, 4] + [6, 0, 1] ⇒ [2, 4, 6, 0, 1]

E
xe

rc
is

e Use this to write a function countdown_list much like countdown, that returns a
list[int], instead of printing them.
countdown_list(4) ⇒ [4, 3, 2, 1]

countdown_list(5) ⇒ [5, 4, 3, 2, 1]

Use the fact that countdown_list(5) = [5] + countdown_list(4).

24/39 CS 114 - Fall 2024 Module 9, Section 4: Implementing Loops with Recursion

Example: the Fibonacci sequence

The Fibonacci sequence is a sequence of numbers that can be define as follows:

F (0) = 0; F (1) = 1; F (n) = F (n − 1) + F (n − 2) for n > 1

We get a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

We can easily implement this in code:
def fib(n: int) -> int:

"""Return the n-th Fibonacci number."""
if n == 0: return 0
elif n == 1: return 1
else: return fib(n-1) + fib(n-2)

It works: fib(6) ⇒ 8, and fib(10) ⇒ 55. But what is fib(38)? It takes about 20 s to find.

fib(55) would take a day. fib(67) would take a year. fib(82) would take 1000 years.

25/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Example: the Fibonacci sequence

This code is very slow. Why? Imagine we call fib(6). It calls fib(5) and fib(4).

But fib(5) also calls fib(4) and fib(3). So we call fib(4) twice. And each time it is called,
it calls fib(3) and fib(2). And so on.

fib(6)

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

fib(0)fib(1)

fib(5)

fib(3)

fib(1)fib(2)

fib(0)fib(1)

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

fib(0)fib(1)

26/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Example: the Fibonacci sequence

By hand, it’s easy to calculate the sequence: just look at the previous two values:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

To calculate fib(n), the answer is trivial if we already know fib(n-1) and fib(n-2).

I’m going to rewrite my code so it stores the previous two values. Like so:
def fib(n: int) -> int:

"""Return the n-th Fibonacci #."""
f0 = 0
f1 = 1
while n > 0:

new = f0 + f1
f0 = f1
f1 = new
n = n - 1

return f0

27/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Example: the Fibonacci sequence

How can I do this using recursion?
def fib(n: int) -> int:

"""Return the n-th Fibonacci #."""
f0 = 0
f1 = 1
while n > 0:

new = f0 + f1
f0 = f1
f1 = new
n = n - 1

return f0

Problem: I need to give values to f0 and f1

before I start, and change them in each step.

Each recursive call only gets the values I pass
as arguments.
So create parameters to store these values.
def fib_rec(n: int, f0: int, f1: int) -> int:

"""Return the Fibonacci # n steps
after where it starts f0, f1.
"""
if n > 0:

return fib_rec(n - 1, f1, f0 + f1)
else:

return f0

fib_rec(100, 0, 1)

28/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Implementing Loops with Recursion: a Procedure

Think about this transformation of code:
def fib(n: int) -> int:

"""Return the n-th Fibonacci #."""
f0 = 0
f1 = 1
while n > 0:

new = f0 + f1
f0 = f1
f1 = new
n = n - 1

return f0

def fib_rec(n: int, f0: int, f1: int) -> int:
"""Return the Fibonacci # n steps
after where it starts f0, f1.
"""
if n > 0:

return fib_rec(n - 1, f1, f0 + f1)
else:

return f0

P
ro

ce
du

re

To rewrite code using while so it uses recursion instead,
■ Add a parameter for each local variable; set initial value in call: fib_rec(n, 0, 1).
■ Replace the while with a if.
■ return the value from an recursive call with updated parameters.
■ In the else, return the answer based on the parameter values.

29/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Example: Square Roots
P

ro
ce

du
re

■ Add a parameter for each local variable; set initial value in call.
■ Replace the while with a if.
■ return the value from an recursive call with updated parameters.
■ In the else, return the answer based on the parameter values.

Recall this code that estimates the square root:
def sqrt(n: float) -> float:

"""Approximate the square root of n.
Requires: n >= 0"""
g = 1.0 # initial guess; it may be bad, but it doesn't matter.
Don't start at the int 1; we promised to return a float!
while abs(g**2 - n) > 0.0001:

g = (g + n/g) / 2
return g

E
xe

rc
is

e

Use the procedure above to write
sqrt_rec using recursion only.

30/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Wrapper Functions

To use fib_rec, we need to remember to call it like fib_rec(n, 0, 1) instead of fib(n).

Likewise, to use sqrt_rec we need to remember to call it like sqrt_rec(n, 1.0) instead of
sqrt(n).

For each, we could write a wrapper function:
def fib(n: int): return fib_rec(n, 0, 1)

def sqrt(n: float): return sqrt_rec(n, 1.0)

A wrapper function is a function that does some small setup before calling another
function that does the main work. It may also do some cleanup afterwards.

This is OK, but it’s kind of annoying.

I should write a docstring, annotations, and tests, even though they do almost nothing.

That’s a lot of work for not much.

31/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Default Parameter Values

We’ve seen before functions that don’t always take the same number of arguments.

One example is math.log; it can be called with two arguments or one:
math.log(81, 3) ⇒ 4.0, corresponding to log3 81
math.log(81) ⇒ 4.394449154672, corresponding to loge 81

If we write math.log(x), it is like writing math.log(x, math.e).

This is what we want to do!

If we call fib_rec(n), we want it to be like writing fib_rec(n, 0, 1).

If we call sqrt_rec(n), we want it to be like writing sqrt_rec(n, 1.0).

32/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Default Parameter Values

We only need one tiny change.

After the type annotation of a parameter, add =val to set a default value:
def fib_rec(n: float, f0: int=0, f1: int=1) -> int:

Now fib_rec(n) is like fib_rec(n, 0, 1):
fib_rec(100) ⇒ 354224848179261915075

E
xe

rc
is

e Make this one tiny change to your sqrt_rec function so you can call it without the extra
1.
sqrt_rec(100.0) ⇒ 10.000000000139897

33/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Example: calculating cos

Recall this function to calculate the cosine that we wrote back in module 03:
def cos(x: float) -> float:

"""Approximate cos(x) using Taylor series."""
total = 0.0
i = 0
sign = 1
nextterm = sign * x**i / math.factorial(i)

while abs(nextterm) >= 0.0001:
total = total + nextterm
i = i + 2 # count 0, 2, 4, 6, 8, ...
sign = -sign # alternate +, -, +, -, ...
nextterm = sign * x**i / math.factorial(i)

return total

E
x. Rewrite cos using recursion only.

Reminder:

P
ro

ce
du

re

■ Add a parameter for each local
variable; set initial value in call.

■ Replace the while with a if.
■ return the value from an

recursive call with updated
parameters.

■ In the else, return the answer
based on the parameter
values.34/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Mutable Default Parameter Values

There is one issue when the default parameter is mutable (e.g. a list or dictionary).

This looks good:
def reverse_rec(L: list[any], answer: list[any]=[]) -> list[any]:

"""Return a list containg all values from L, in reverse order. Mutates L to []."""
if L != []:

newval = L.pop()
answer.append(newval)
return reverse_rec(L, answer)

else:
return answer

reverse_rec([2,4,6,0,1]) ⇒ [1, 0, 6, 4, 2]

Looks good so far. But call the function a second time:
reverse_rec([7]) ⇒ [1, 0, 6, 4, 2, 7]

This second call does not start with a new answer=[], but the same list.

35/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

One Weird Trick

This code fixes it:
def reverse_rec(L: list[any], answer: list[any] | None=None) -> list[any]:

"""Return a list containg all values from L, in reverse order. Mutates L to []."""
if answer == None: # The "default value":

answer = []

if L != []:
newval = L.pop()
answer.append(newval)
return reverse_rec(L, answer)

else:
return answer

P
ro

ce
du

re We change two things:
1 The default value for the parameter is None. (And add “| None” to the annotation.)
2 When answer is None, we assign a new list to it.

36/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

One Weird Trick

def fib_sequence(n: int,
seq: list[int]=[0,1]) -> list[int]:

"""Return the first n terms of the Fibonacci sequence."""
if n > 2:

seq.append(seq[-2] + seq[-1])
return fib_sequence(n-1, seq)

else:
return seq

fib_sequence(6) ⇒ [0, 1, 1, 2, 3, 5]

Looks good, but call it again:
fib_sequence(6) ⇒ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

E
x. Fix fib_sequence.

P
ro

ce
du

re We change two things:
1 The default value for the parameter is None. (And add “| None” to the annotation.)
2 When answer is None, we assign a new list to it.

37/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Python hates recursion

Any computation that can be done can be done using only recursion.

However, Python is not designed to run recursive code well.

Try running countdown(5000).

By default, it can recurse to a depth of only 3000 or so.

For most reasonable situations, this is not a serious limitation. A Family of depth 3000,
where everyone had 2 children, would have 23000 ≈ 10900 = googol9 people. That’s vastly
larger than any dataset that can exist in the universe.

If a computation is very “deep”, it’s probably better to write using a loop.

Recursion is great with tree-like data. In Python, we should use loops for most other
purposes.

We need to be able to use recursion. We can’t claim to be skilful programmers without it.
38/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Review and Practice

These exercises review a pile of skills from throughout the term.

E
xe

rc
is

e Write a function times_table_iterative(n:int) -> list[tuple[int,int,int]] that creates
the times table up to n×n. Do not use recursion. Use two for loops.
check.expect("3x3", times_table_iterative(3),

[(1,1,1),(1,2,2),(1,3,3),(2,1,2),(2,2,4),(2,3,6),(3,1,3),(3,2,6),(3,3,9)])

E
xe

rc
is

e

Rewrite times_table_iterative so it uses two while loops.

E
xe

rc
is

e Consider how you can re-write the inner while loop as a separate recursive function
times_table_row(n, ans, i, j=1).
Write a function times_table_recursive so it uses no loops. Call times_table_row
repeatedly, using recursion.

39/39 CS 114 - Fall 2024 Module 9, Section 5: Tail Recursion

Module summary

Be able to write recursive code to draw fractals.
Work with recursive data structures, especially trees and including leaf-labelled trees.
See how we can use recursion instead of loops to do computations.

Before we begin the next module:
Read and complete the exercises in module 9 of the online textbook, at
https://online.cs.uwaterloo.ca/
Complete the module 9 Review Quiz, due on Monday.

40/39 CS 114 - Fall 2024 Module 9, Section 6: Summary

https://online.cs.uwaterloo.ca/

	Recursion
	Fractals
	Trees
	Implementing Loops with Recursion
	Tail Recursion
	Summary

