
Module 10: Efficiency
E

xe
rc

is
e

If you have not already, get prepared for class by downloading the start code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/module-10-start.ipynb

1/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Comparing Algorithms

Given two algorithms which both solve a problem, how can we tell which is better?
Which is easier to understand? Implement? Accurate? More robust? Adaptable?
Efficient?
We define efficiency as how much of something the algorithm requires.
The something is usually time, but sometimes space (memory).
Faster is better.

In Jupyter, look at the file you get by running:
!wget https://student.cs.uwaterloo.ca/~cs114/src/efficiency_measurement.ipynb

2/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Example: measuring time for Fibonacci

def fibr(n: int) -> int:
"""Return the n-th number in the
Fibonacci sequence starting 0 1."""
if n < 2: return n
else: return fibr(n-1) + fibr(n-2)

def fibt(n: int, f0: int, f1: int) -> int:
"""Return the n-th number in the
Fibonacci sequence starting f0 f1."""
if n == 0: return f0
else: return fibt(n-1, f1, f0+f1)

fibt is vastly faster.... We are not concerned about small improvements.
3/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Measuring time

Time in seconds depends on the exact computer (a faster processor runs faster), what
language, compiler settings,. . .

Instead of counting seconds,we will measure the number of steps or basic
operations performed.
For example, the number of additions or multiplications.
Sometimes different inputs will cause different running times. We could consider best
case, average case, or worst case.
We will consider the worst case: assume data are organized as badly as possible.
We will be informal; take CS234/240 for details.

4/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Problem size

We use n to refer to the size of the problem. But this depends on the context.

Running time is a function of n, denoted T (n).

5/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Counting Steps

def sum_all(values: list[int]) -> int:
total = 0
i = 0
upper = len(values)
while (i < upper):

total = total + values[i]
i = i + 1

return total

Let n be the length of the list.
How many steps?
Something like 6n + 6. But we don’t really
care about the constants.

6/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Counting Steps
E

xe
rc

is
e

Pick a small int for n, different from the person beside you.
Count how many times + is used by the following program:
total = 0
for i in range(0, n):

for j in range(0, n):
total = total + j

In general, n2 additions are done.

7/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Big O notation

We are not concerned about small improvements:

Removing a constant amount does not really matter; 6n + 6 is not much worse than
6n.
The coefficient does not matter; 6n is not much worse than n.
We are interested in the order of the running time: the dominant term without its
coefficients.
So 6n + 6, 6n, n, and 174n + 32 are all considered to be more or less the same. They
are “order n”, which we denote O(n).
This is the asymptotic running time; what T (n) approaches as n gets large.

8/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

A few Examples

24601 = O(1)
12

√
n + 45 = O(

√
n)

20n2 + 3n + 27 = O(n2)
3 + n + n2 + 2n = O(2n)

9/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Best Case/Worst Case

Consider the following. (Let n be the length of L.)
def has10(L: list[any]) -> bool:

i = 0
while i < len(L):

if L[i] == 10:
return True

i = i + 1
return False

E
xe

rc
is

e

How many steps take place if L = [10, 0, 0, 0, ... , 0]?

E
xe

rc
is

e

How many steps take place if L = [0, 0, 0, ... , 0, 10]?

10/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Important Big O information

In this course we will encounter only a few orders:

O(1) < O(log n) < O(
√

n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

Note that these relationships hold as n → ∞
When comparing algorithms, the most efficient is the one with the lowest order.
If two algorithms have the same order, they are considered equivalent, even if they do
not take exactly the same number of steps.

11/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Important Orders

12/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Big O arithmetic

When adding two orders, the result is the larger of the two orders.

O(
√

n) + O(n) = O(n)
O(1) + O(1) = O(1)

How can we use this result?

Break code into blocks that run one after the other.
Determine the asymptotic running times of the blocks independently.
Add them to get the overall running time.

14/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Basic Operations on numbers and strings

Working with float and int values:
+, -, *, /, //, %, =, ==, >, < etc are O(1)
max(a,b), min(a,b) are O(1)

Working with str values, where n=len(s)

len(s), s[i] are O(1)
s + t is O(n + len(t))
Most methods (e.g. split, join, count) are O(n).

print depends on the length of what is being printed.

15/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Basic operations on lists

Working with lists, where n=len(L):

len(L), L[k] are O(1).
L + M is O(n + len(M)).
sum(L), max(L), min(L) are O(n)
L.append(x) is O(1).
L.pop(0) is O(n), but L.pop() is O(1).
L.sort() and sorted(L) are O(n log n).
Slicing: L[a:b] costs the length of the slice: L[:] is O(n), L[1:] is O(n − 1), but this is
also O(n).
Most other methods are O(n).

16/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

General strategy

Count iterations.
For each iteration, determine the running time of the body.
Multiply the iterations by the cost of each.
Add totals and simplify.

s = [] # cost is O(1)
for j in range(0, n): # count iterations: O(n)

s.append(i*j) # body running time: O(1)
"for j" runs n times, O(1) each time, so O(1) * O(n) ⇒ O(n)

t = list(range(n))
for j in range(0, n): # count iterations: O(n)

t = [t[-1]] + t[:-1] # body running time: O(n)
"for j" runs n times, O(n) each time, so O(n) * O(n) ⇒ O(n**2)

17/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

More Big O arithmetic

When multiplying two orders, the result is the product of the two orders.
O(A) · O(B) = O(A · B)
Important examples:

O(log n) · O(n) = O(n log n)
O(n) · O(n) = O(n2)

So we can multiply the running time of the number of loop iterations by the running time of
the body of the loop to get the overall running time.

19/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Extra Costs
E

xe
rc

is
e

Which of these is more efficient?

diff = 0
for x in L:

diff = diff + abs(x - sum(L)/len(L))

O(n2)

diff = 0
mean = sum(L)/len(L)
for x in L:

diff = diff + abs(x-mean)

O(n)

Avoid re-computing things, and move non-O(1) steps outside the loop when possible.

20/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

What is the worst case running time?

def sum_odd(L: list[int]) -> int:
M = L[:]
total = 0
while M != []:

if M[0] % 2 == 1:
total = total + M[0]

M = M[1:]
return total

def sum_odd(L: list[int]) -> int:
M = L[:]
total = 0
while M != []: # M shortens by 1 each loop, so n iterations

if M[0] % 2 == 1:
total = total + M[0]

M = M[1:] # this line takes len(M) each time
return total

E
xe

rc
is

e

Rewrite sum_odd in O(n). Hint: use a for loop, or use pop().
def sum_odd(L: list[int]) -> int:

M = L[:]
total = 0
while M != []: # M shortens by 1 each loop, so n iterations

if M[0] % 2 == 1:
total = total + M[0]

M = M[1:] # this line takes len(M) each time
return total

21/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

What if there are nested loops?

The body of a loop may contain another loop. This changes nothing; we still:

Count iterations.
For each iteration, determine the running time of the body.
Add them up.

If the body contains another loop, do this again to compute the running time of the body.
s = []
for i in range(0, n): # count iterations: O(n)

for j in range(0, n): # count iterations: O(n)
s.append(i*j) # body running time: O(1)

"for j" runs n times, O(1) each time, so O(n) total
"for i" runs n times, n times, O(n) each time, so O(n**2) total.

t = list(range(n))
for i in range(0, n): # count iterations: O(n)

for j in range(0, n): # count iterations: O(n)
t = [t[-1]] + t[:-1] # body running time: O(n)

"for j" runs n times, O(n) each time, so O(n**2) total
"for i" runs n times, O(n**2) each time, so O(n**3) total.

Hidden O(n2) summations

There are several ways we can get O(n2) unexpectedly:
L = []
for i in range(0, n): ## O(n) iterations

L = [i] + L # 1, 2, 3, ..., (n-2), (n-1), n

n∑
i=1

i = 1 + 2 + · · · + (n − 1) + n︸ ︷︷ ︸
n

=
n(n + 1)

2
= O(n2)

Let n be the length of L
while L != []: ## O(n) iterations

L.pop(0) # (n-1), (n-2), (n-3), ..., 2, 1, 0

n∑
i=1

i − 1 = (n − 1) + (n − 2) + ... 2 + 1 + 0︸ ︷︷ ︸ =
n(n − 1)

2
= O(n2)

Key message: when you
add up n items, and the
cost per item grows (or
shrinks) linearly, you will
end up with O(n2) total
cost.

23/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

Hidden O(n2) summations
E

xe
rc

is
e

For each function,
1 determine the running time of each line, then
2 add these up to determine the total.

def sum(n: int) -> int:
total = 0
while n > 0:

total = total + n
n = n - 1

return total

def list_sum(n: int) -> list[int]:
total = []
while n > 0:

total = total + [n]
n = n - 1

return total

24/34 CS 114 - Fall 2024 Module 10, Section 2: Big-O

How do we determine runtime of recursive code?

def list_max(L): # T(n): cost of whole function
if (len(L) # O(1): determine len(L)

== 1): # O(1): compare to 1: O(1)
return L[0]

else:
return (
max(# O(1): max of two values

L[0], # O(1): calculate L[0]
list_max(# T(n-1): recursive call on 1 smaller

L[1:]))) # O(n): calculate L[1:]

Let T (n) be the running time of the function. Then:

T (n) = O(1) + O(1) + O(1) + O(1) + T (n − 1) + O(n)

Simplifying:

T (n) = O(n) + T (n − 1)

25/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Recurrence Relations

Analysis of recursive code gives a recurrence relation such as T (n) = O(n) + T (n − 1).
The running time of a problem is the sum of

running time of the non-recursive code
running time of the recursive call(s).

We don’t want a recurrence relation, we want a running time.

We need to solve the recurrence relation. There are many techniques to do this. We will
only consider simple cases which can be solved by drawing a tree.

26/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Solving Recurrence Relations

We can reason through a recurrence relation to figure out its total cost, using area as an
analogy.

Here are solutions to a bunch of important relations.

Don’t memorize this. If you ever need these, I will give you this table.
(Outside of exams, you can look it up here).

1. T (n) = O(n) + T (n − 1) → O(n2)
2. T (n) = O(1) + T (n − 1) → O(n)
3. T (n) = O(1) + T (n/2) → O(log n)
4. T (n) = O(n) + 2T (n/2) → O(n log n)
5. T (n) = O(n) + T (n/2) → O(n)
6. T (n) = O(1) + 2T (n − 1) → O(2n)
7. T (n) = O(1) + T (n − 1) + T (n − 2) → O(2n) (or...?)
8. T (n) = O(n) + 2T (n − 1) → O(2n)

27/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Two ways to find maximum in a list
E

xe
rc

is
e For each algorithm:

1 Add a comment to each line, indicating the big-O running time of that line.
Use T (...) to represent the running time of a recursive call.

2 Add up the costs, simplify the recurrence, and look up its solution in the table.

def list_max1(x: list[float]) -> float:
if len(x) == 1:

return x[0]
elif x[0] > list_max1(x[1:]):

return x[0]
else:

return list_max1(x[1:])

def list_max2(y: list[float],
m: float|None=None) -> float:

if m == None:
m = y[0]

if len(y)==0:
return m

elif m > y[0]:
return list_max2(y[1:], m)

else:
return list_max2(y[1:], y[0])

28/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Overall comments

We’ve provided just a basic introduction to runtime analysis, especially for recursive code.
We have made some simplifications.

The topic is very important, though, and even a introduction can help you design better
programs.

Like this topic? See CS 234 (non-CS-majors), CS 240 (CS-majors).

Solving recurrences also features in Math 229/239/249 and courses in C&O.

30/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Computing Prime Numbers
E

xe
rc

is
e

Write a function is_prime(n) that returns True if n is prime, and False otherwise.

E
xe

rc
is

e

What is the running time of your algorithm? Can you improve it?

E
xe

rc
is

e Suppose we wanted to find all the prime numbers between 0 and n. Write a function
to do this.
Can you make your function run faster than running is_prime(n) repeatedly?

31/34 CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Module summary

Understand how to analyse Python code to determine its running time, including code
which is recursive or iterative.
Recognize basic run time categories, from O(1) to O(2n).

Read and complete the exercises in module 10 of the online textbook, at
https://online.cs.uwaterloo.ca

32/34 CS 114 - Fall 2024 Module 10, Section 4: Summary

https://online.cs.uwaterloo.ca

Options for continuing CS

If you want to take more CS courses, enrol in CS 115.

In it you will:

Use no loops, and change no variables, in a wacky language that has evolved since
1958,
do some pretty abstract stuff, and
recurse until you curse.

Talk to the CS advisors if you’re interested in a CS major, computing minor, or whatever.

Participate in course selection!

33/34 CS 114 - Fall 2024 Module 10, Section 4: Summary

	Efficiency
	Big-O
	Big-O of Recursive Code
	Summary

