Module 10: Efficiency

If you have not already, get prepared for class by downloading the start code:
lwget https://student.cs.uwaterloo.ca/~csl1l4/src/module-10-start.ipynb

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Comparing Algorithms

@ Given two algorithms which both solve a problem, how can we tell which is better?

@ Which is easier to understand? Implement? Accurate? More robust? Adaptable?
Efficient?

@ We define efficiency as how much of something the algorithm requires.
@ The something is usually time, but sometimes space (memory).
@ Faster is better.

In Jupyter, look at the file you get by running:

lwget https://student.cs.uwaterloo.ca/~csll4/src/efficiency_measurement.ipynb

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Example: measuring time for Fibonacci

def fibr(n: int) -> int: def fibt(n: int, f0: int, fl: int) -> int:
"""Return the n-th number in the """Return the n-th number in the
Fibonacci sequence starting 0 1.""" Fibonacci sequence starting fO f1."""
if n < 2: return n if n == 0: return f0
else: return fibr(n-1) + fibr(n-2) else: return fibt(n-1, f1, fO+fl)
6000 0.3
L]
5000 0.25
[
4000 02
g o g
< 3000 < 015
£ £
B B °
2000 ° 0.1
[]
1000 0.05
° []
06 oo oooee®?® 0
20 22 24 26 28 30 32 34 0 100 200 300 400 500
n n

fibt is vastly faster.... We are not concerned about small improvements.

3/34 CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Time in seconds depends on the exact computer (a faster processor runs faster), what
language, compiler settings,. ..

@ Instead of counting seconds,we will measure the number of steps or basic

operations performed.
For example, the number of additions or multiplications.

@ Sometimes different inputs will cause different running times. We could consider best
case, average case, or worst case.
@ We will consider the worst case: assume data are organized as badly as possible.

@ We will be informal; take CS234/240 for details.

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Problem size

We use n to refer to the size of the problem. But this depends on the context.

Running time is a function of n, denoted T(n).

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Counting Steps

def iull,%ll(values: list[int]) -> int: Let n be the Iength of the list.
otal =
i=0 How many steps?
Spper Tlle"(vah")%S) Something like 6n+ 6. But we don't really
whnl e 1 < upper):
total = ?gtal + values[i] care about the constants.
i=1i+1
return total

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Counting Steps

N\

Pick a small int for n, different from the person beside you.

Count how many times + is used by the following program:
total = 0
for i in range(0, n):
for j in range(0, n):
total = total + j

In general, n? additions are done.

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Big O notation

We are not concerned about small improvements:

@ Removing a constant amount does not really matter; 6n + 6 is not much worse than
6n.

@ The coefficient does not matter; 6n is not much worse than n.

@ We are interested in the order of the running time: the dominant term without its
coefficients.

@ So6n+6,6n, n,and 174n+ 32 are all considered to be more or less the same. They
are “order n”, which we denote O(n).

@ This is the asymptotic running time; what T (n) approaches as n gets large.

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

A few Examples

@ 24601 = O(1)

o 12N +45 = O(Vn)

@ 20 +3n+27 = O(rP)
@ 3+n+n?+2"=0(2")

CS 114 - Fall 2024 Module 10, Section 1: Efficiency

Best Case/Worst Case

Consider the following. (Let n be the length of L.)

def haslO(L: list[any]) -> bool:
i=0

while i < len(L):
if L[i] == 10:
return True
i=1+1
return False

How many steps take place if L = [10,0,0,0,...,0]?

E How many steps take place if L = [0,0,0,...,0,10]?

CS 114 - Fall 2024

Module 10, Section 1: Efficiency

Important Big O information

@ In this course we will encounter only a few orders:
O(1) < O(log n) < O(¥n) < O(n) < O(nlogn) < O(n?) < O(n®) < O(2")

@ Note that these relationships hold as n — oo
@ When comparing algorithms, the most efficient is the one with the lowest order.

@ If two algorithms have the same order, they are considered equivalent, even if they do
not take exactly the same number of steps.

CS 114 - Fall 2024 Module 10, Section 2: Big-O

Important Orders

DHH Y —
xX¥*2
x*log(x)

X
logix)

] —

CS 114 - Fall 2024 Module 10, Secti

Big O arithmetic

When adding two orders, the result is the larger of the two orders.
@ O(Vn)+0O(n) = O(n)
@ O(H+0()=0()

How can we use this result?

@ Break code into blocks that run one after the other.

@ Determine the asymptotic running times of the blocks independently.
Add them to get the overall running time.

CS 114 - Fall 2024 Module 10, Section 2: Big-O

Basic Operations on numbers and strings

@ Working with fleat and int values:
o+, -,%,/,//,% =,==> <etcare O(1)
@ max(a,b), min(a,b) are O(1)

@ Working with str values, where n=1len(s)

@ len(s), s[i] are O(1)
@ s + tisO(n+1len(t))
@ Most methods (e.g. split, join, count) are O(n).

@ print depends on the length of what is being printed.

CS 114 - Fall 2024 Module 10, Section 2: Big-O

Basic operations on lists

Working with lists, where n=1en(L):

@ len(L), L[k] are O(1).

L + Mis O(n+1len(M)).

sum(L), max(L), min(L) are O(n)
L.append(x) is O(1).

L.pop(0) is O(n), but L.pop() is O(1).
L.sort() and sorted(L) are O(nlogn).

Slicing: L[a:b] costs the length of the slice: L[:1is O(n), L[1:1is O(n-1), but this is
also O(n).

Most other methods are O(n).

CS 114 - Fall 2024 Module 10, Section 2: Big-O

General strategy

@ Count iterations.

@ For each iteration, determine the running time of the body.
@ Multiply the iterations by the cost of each.

@ Add totals and simplify.

s =[] # cost 1is 0(1)
for j in range(0, n): # count iterations: 0(n)
s.append(ixj) # body running time: 0(1)

"for j" runs n times, 0(1) each time, so 0(1) * 0(n) = 0(n)

t = list(range(n))
for j in range(0, n): # count iterations: 0(n)
t = [t[-1]] + t[:-1] # body running time: 0(n)
"for j" runs n times, 0(n) each time, so 0(n) x 0(n) = 0(n*x2)

CS 114 - Fall 2024 Module 10, Section 2: Big-O

More Big O arithmetic

When multiplying two orders, the result is the product of the two orders.
O(A)-O(B) = O(A- B)

Important examples:
@ O(logn) - O(n) = O(nlogn)
@ O(n)-O(n) = O(r?)

So we can multiply the running time of the number of loop iterations by the running time of
the body of the loop to get the overall running time.

CS 114 - Fall 2024 Module 10, Section 2: Big-O

Extra Costs

N\

Which of these is more efficient?

or x in L: mean = sum(L)/len(L)
diff = diff + abs(x - sum(L)/len(L)) for x in L:
O(n2) diff = diff + abs(x-mean)

O(n)

Avoid re-computing things, and move non-O(1) steps outside the loop when possible.

CS 114 - Fall 2024 Module 10, Section 2: Big-O

What is the worst case running time?

def sum_odd(L: list[int]) -> int:
M=L[:]
total = 0
while M !'= []:
if M[O] % 2 == 1:
total = total + M[0O]
M= M[1:]
return total

def sum_odd(L: list[int]) -> int:

M=LI[:]
total = 0
while M != []: # M shortens by 1 each loop, so n iterations
if M[O] % 2 == 1:
total = total + M[0O]
M= M[1:] # this line takes len(M) each time

return total

Rewrite sum_odd in O(n). Hint: use a for loop, or use pop().
def sum_odd(L: list[int]) -> int:
M= L[:]
total = 0
while M != []: # M shortens by 1 each loop, so n iterations

rcise

a

CS 114 - Fall 2024 Module 10, Section 2: Big-O

What if there are nested loops?

The body of a loop may contain another loop. This changes nothing; we still:

@ Count iterations.
@ For each iteration, determine the running time of the body.
@ Add them up.

If the body contains another loop, do this again to compute the running time of the body.
s =[]

for i in range(0, n): # count iterations: 0(n)
for j in range(0, n): # count iterations: 0(n)
s.append(ixj) # body running time: 0(1)

"for j" runs n times, 0(1) each time, so 0(n) total
"for 1" runs n times, n times, 0(n) each time, so 0(nxx2) total.
t = list(range(n))
for i in range(0, n): # count iterations: 0(n)

for j in range(0, n): # count iterations: 0(n)

t = [t[-1]] + t[:-1] # body running time: 0(n)

"for j" runs n times, 0(n) each time, so 0(nxx2) total

"for 1" runs n times, 0(nxx2) each time, so 0(nxx3) total.

Hidden O(n?) summations

There are several ways we can get O(n?) unexpectedly:

L=1] Key message: when you
for i in range(Q, n): ## 0(n) iterations i
L=Ti] +L #1,2,3, ..., (n-2), (n-1), n add up n items, and the
cost per item grows (or
i n(n+1)) shrinks) I|.nearly,2you will
Dyi=1+2++(n-1)+n= === O(rF) end up with O(rP) total
=1
i M cost.
Let n be the length of L
while L != []: ## 0(n) iterations
L.pop(0) # (n-1), (n-2), (n-3), ..., 2, 1, 0

Dli-1 :(n—1)+(n—2)+...2+1+0:w

i=1

= O(r?)

CS 114 - Fall 2024 Module 10, Section 2: Big-O

Hidden O(n?) summations

N\

For each function,
@ determine the running time of each line, then
© add these up to determine the total.

def sum(n: int) -> int: def list_sum(n: int) -> list[int]:
total = 0 total = []
while n > 0: while n > 0:
total = total + n total = total + [n]
n=n-1 n=n-1
return total return total

CS 114 - Fall 2024 Module 10, Sectio

How do we determine runtime of recursive code?

def list_max(L): # T(n): cost of whole function

if (len(L) # 0(1): determine len(L)
= 1): # 0(1): compare to 1: 0(1)
return L[0]
else:
return (
max (# 0(1): max of two values
L[O], # 0(1): calculate L[0O]
list_max(# T(n-1): recursive call on 1 smaller

L[1:1))) # O(n): calculate L[1:]
Let T(n) be the running time of the function. Then:

T(n)=01)+0(1)+0(1)+0(1)+T(n-1)+ O(n)

Simplifying:

T(n)=0(n+T(n-1)

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Recurrence Relations

Analysis of recursive code gives a recurrence relation suchas T(n) = O(n)+ T(n—-1).
The running time of a problem is the sum of

@ running time of the non-recursive code

@ running time of the recursive call(s).
We don’t want a recurrence relation, we want a running time.

We need to solve the recurrence relation. There are many techniques to do this. We will
only consider simple cases which can be solved by drawing a tree.

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Solving Recurrence Relations

We can reason through a recurrence relation to figure out its total cost, using area as an
analogy.

Here are solutions to a bunch of important relations.

Don’t memorize this. If you ever need these, | will give you this table.
(Outside of exams, you can look it up here).

1. T(n)=0(n)+T(n-1) — O(n?)

2. T(nn=0(1)+T(n-1) — O(n)

3. T(n)=0(1)+T(n/2) — O(log n)

4. T(n)=0(n)+2T(n/2) — O(nlog n)

5. T(n)=0(n)+T(n/2) — O(n)

6. T(n=0(1)+2T(n-1) — 02"

7. T(n=0MN+T(n-1H+T(n-2) — O2") (or..?)
8. T(n)=0(n)+2T(n-1) — 02"

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Two ways to find maximum in a list

For each algorithm:

@ Add a comment to each line, indicating the big-O running time of that line.
Use T(...) to represent the running time of a recursive call.

© Add up the costs, simplify the recurrence, and look up its solution in the table.

def list_ maxl(x list[float]) -> float: def list_max2(y: list[float],
if len(x) = m: float|None=None) -> float:
return x[O] if m == None:
elif x[0] > list_max1(x[1:]): m=y[0]
return x[0]
else: if len(y)==
return list_max1(x[1l:]) return m

elif m > y[0]:

return list_max2(y[1:], m)
else:

return list_max2(y[1l:], y[0O])

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Overall comments

We’ve provided just a basic introduction to runtime analysis, especially for recursive code.
We have made some simplifications.

The topic is very important, though, and even a introduction can help you design better
programs.

Like this topic? See CS 234 (non-CS-majors), CS 240 (CS-majors).

Solving recurrences also features in Math 229/239/249 and courses in C&O.

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Computing Prime Numbers

N\

E Write a function is_prime(n) that returns True if n is prime, and False otherwise.

What is the running time of your algorithm? Can you improve it?

Suppose we wanted to find all the prime numbers between o and n. Write a function
to do this.
Can you make your function run faster than running is_prime(n) repeatedly?

CS 114 - Fall 2024 Module 10, Section 3: Big-O of Recursive Code

Module summary

@ Understand how to analyse Python code to determine its running time, including code
which is recursive or iterative.

@ Recognize basic run time categories, from O(1) to O(2").

Read and complete the exercises in module 10 of the online textbook, at
https://online.cs.uwaterloo.ca

CS 114 - Fall 2024 Module 10, Section 4: Summary

https://online.cs.uwaterloo.ca

Options for continuing CS

If you want to take more CS courses, enrol in CS 115.

In it you will:

@ Use no loops, and change no variables, in a wacky language that has evolved since
1958,

@ do some pretty abstract stuff, and
@ recurse until you curse.

Talk to the CS advisors if you're interested in a CS major, computing minor, or whatever.

Participate in course selection!

CS 114 - Fall 2024 Module 10, Section 4: Summary

	Efficiency
	Big-O
	Big-O of Recursive Code
	Summary

