
Lab 04: Booleans, predicates, conditionals

Create a separate file for each question. Keep them in your “Labs” folder, with the name lijqk
for Lab ij, Question k.

Download the headers for each function from the file labinterface04.rkt linked off the
“Labs” page on the course Web site.

After you have completed a question (except class exercises), including creating tests for it, you
can obtain feedback by submitting it and requesting a public test. Follow the instructions given in
the Style Guide.
 Language level: Beginning Student.

1. [Class exercise with lab instructor assistance] Create a function two-multiples that consumes

three numbers, target, candidate1, and candidate2, and determines whether target is a
multiple of both candidates. Your function should produce "both" if it is multiples of both,
"neither" if it is a multiple of neither, and the value of the candidate if it is the multiple of one
of the two. If any of the three numbers is a non-integer, your function should produce false.

2. [Modified from HtDP exercise 4.2.1] Translate each of the following subsets of the real line

into Scheme functions that consume a number and produce true if the number is in the subset
and false if it is outside the subset: (3,7]; the union of (1,3) and (9,11); the range of numbers
outside of [1,3] (use the names in-subset-1?, in-subset-2?, and in-subset-3?).

3. Consider an auction where the rules are such that each new bid must be at least 5% higher

than the current high bid. For example, if the current high bid is $100, then the next bid must
be at least $105.

Create a function acceptable-bid? that consumes two positive numbers (current-high and
next-bid) and produces true if next-bid includes an increase of at least 5% when compared to
current-high, and false otherwise. Try writing the body of the function without using a cond
expression.

4. Create a function new-string that consumes two strings (called original and add-on) and a

symbol (called order), and produces the string original followed by add-on if position is
‘after, the string add-on followed by original if order is ‘before, and original for any other
value of order. For example, (new-string "abc" "123" 'before) produces "123abc" and (new-
string "abc" "123" 'after) produces "abc123".

5. Create a function switch-case-char that consumes a character (called ch) and produces ch if it

is not a letter, ch in upper-case if it is a lower-case letter, and ch in lower-case if it is an
upper-case letter. You may wish to consult the supplementary information on strings, linked
off the Resources page on the course Web site.

6. Create the predicate connect? that consumes two strings (called str1 and str2) and determines

if the last letter in str1 is the same as the first letter in str2.

7. Optional open-ended questions You can now refine your Pig Latin, comparative, and

superlative functions by handling cases differently depending on the starting letter or letters

(for Pig Latin) and the ending letter or letters (for comparatives and superlatives).

Helpful tips

Highlighted unused code After you have run your program, any unused part of the code will be
highlighted. This either means that you have parts of the code that are not needed (and should be
removed) or that you need to add more tests.

