Lab 11: General trees

Create a separate file for each question. Keep them in your “Labs” folder, with the name 11 g
for Lab 7, Question j.
This lab makes use of the following structure and data definitions:

(define-struct t-node (label children))

;; A general tree (gen-tree) is either

- a string or

5 a structure (make-t-node I c), where
3 [1s a string and

- c 1s a tree-list.

;; A tree-list is either

5 (cons t empty), where
3 t 1s a gen-tree or

5 (cons t tlist), where

5 t is a gen-tree and
5 tlist is a tree-list.

(define-struct single-product (name origin))

;; A single-product is a structure (make-single-product n o), where
5 n is a string and

;3 ols astring denoting the country of origin.

(define-struct sales-product (ID prod))

;; A sales-product is a structure (make-sales-product i p), where
5 i is an integer and

;3 p1s either a single-product or a product-list.

;; A product-list is either

> empty or

5 (cons sp pl), where

3 sp 1s a sales-product and
3 pl is a product-list.

-

Download the headers for each function from the file labinterfacell. rkt linked off the
“Labs” page on the course Web site.

After you have completed a question (except class exercises), including creating tests for it, you
can obtain feedback by submitting it and requesting a public test. Follow the instructions given in
the Style Guide.

The teachpack compound. rkt contains structures for manipulation of chemical compounds
(compounds, parts, and elements); details can be found in compound.pdf on the course Web
site. Remember to add the teachpack.

Language level: Beginning Student with List Abbreviations

1. [Class exercise with lab instructor assistance] Create a function node-count that consumes
a gen-tree g and produces the number of nodes (both leaves and internal nodes).

2. We can modify an arithmetic expression to include a variable x, denoted ’X, as one of the
base cases. Write a data definition for arithmetic expressions with variables (aevx), and then
create functions evalx and applyx needed to evaluate an expression, given a value for ’x.

3. Create a function [l/t-count that consumes a value and a //t and counts the number of times
that value appears in the /lt. Do not use flatten.

4. Create the function from-country? that consumes a sales-product and a string indicating
country of origin and produces frue if there is a single-product within the sales-product
with that origin, and false otherwise. For example, using constants declared in the product
teachpack:

e (from-country? lipbalmpack “Denmark’) => true
e (from-country? lipkit “Denmark”) => true
e (from country? promokit “Kenya”) => false

As this is a new type for you, be sure to develop templates for functions involving single-
product, sales-product, and product-list before attempting to write this function.

5. Create a function molar-mass that consumes a compound and produces the total molar mass
of the compound. Note the following when calculting the molar mass:

e The molar mass of an element is given by its field mmass.
e The molar mass of a compound is the sum of the molar masses of each of its parts.
e The molar mass of a single part is the product if its size and the molar mass of its eoc

field.

For example, the molar mass of c489 is 489. Remember to use check-within for testing if the
data you are using produces inexct numbers.

6. Optional open-ended questions A program that evaluates an arithmetic expression is the
starting point of a Scheme interpreter. Using a small subset of Scheme, write an inter-
preter for a Scheme expression. Once you have it working, consider adding other aspects of
Scheme to enhance your interpreter.

