
Lab 11: General trees

Create a separate file for each question. Keep them in your “Labs” folder, with the name liqj
for Lab i, Question j.

This lab makes use of the following structure and data definitions:

(define-struct t-node (label children))
;; A general tree (gen-tree) is either
;; a string or
;; a structure (make-t-node l c), where
;; l is a string and
;; c is a tree-list.

;; A tree-list is either
;; (cons t empty), where
;; t is a gen-tree or
;; (cons t tlist), where
;; t is a gen-tree and
;; tlist is a tree-list.

(define-struct single-product (name origin))
;; A single-product is a structure (make-single-product n o), where
;; n is a string and
;; o is a string denoting the country of origin.

(define-struct sales-product (ID prod))
;; A sales-product is a structure (make-sales-product i p), where
;; i is an integer and
;; p is either a single-product or a product-list.

;; A product-list is either
;; empty or
;; (cons sp pl), where
;; sp is a sales-product and
;; pl is a product-list.

Download the headers for each function from the file labinterface11.rkt linked off the
“Labs” page on the course Web site.

After you have completed a question (except class exercises), including creating tests for it, you
can obtain feedback by submitting it and requesting a public test. Follow the instructions given in
the Style Guide.

The teachpack compound.rkt contains structures for manipulation of chemical compounds
(compounds, parts, and elements); details can be found in compound.pdf on the course Web
site. Remember to add the teachpack.
Language level: Beginning Student with List Abbreviations

1



1. [Class exercise with lab instructor assistance] Create a function node-count that consumes
a gen-tree g and produces the number of nodes (both leaves and internal nodes).

2. We can modify an arithmetic expression to include a variable x, denoted ’x, as one of the
base cases. Write a data definition for arithmetic expressions with variables (aevx), and then
create functions evalx and applyx needed to evaluate an expression, given a value for ’x.

3. Create a function llt-count that consumes a value and a llt and counts the number of times
that value appears in the llt. Do not use flatten.

4. Create the function from-country? that consumes a sales-product and a string indicating
country of origin and produces true if there is a single-product within the sales-product
with that origin, and false otherwise. For example, using constants declared in the product
teachpack:

• (from-country? lipbalmpack “Denmark”) => true

• (from-country? lipkit “Denmark”) => true

• (from country? promokit “Kenya”) => false

As this is a new type for you, be sure to develop templates for functions involving single-
product, sales-product, and product-list before attempting to write this function.

5. Create a function molar-mass that consumes a compound and produces the total molar mass
of the compound. Note the following when calculting the molar mass:

• The molar mass of an element is given by its field mmass.

• The molar mass of a compound is the sum of the molar masses of each of its parts.

• The molar mass of a single part is the product if its size and the molar mass of its eoc
field.

For example, the molar mass of c489 is 489. Remember to use check-within for testing if the
data you are using produces inexct numbers.

6. Optional open-ended questions A program that evaluates an arithmetic expression is the
starting point of a Scheme interpreter. Using a small subset of Scheme, write an inter-
preter for a Scheme expression. Once you have it working, consider adding other aspects of
Scheme to enhance your interpreter.

2


