
Documentation for the world.ss teachpack
The world.ss teachpack allows you to create animations. Some of the functions are ex-

plained here in detail. Full documentation of these and other functions can be found in the
DrScheme Help Desk. More information on the Help Desk can be found on the “Helpful Tips”
page of the course Web site.

In the same way that a film is a series of still shots seen very quickly in sequence, here an
animation is a series of scenes, changing at each “tick” of the “clock”. There are two main ways
to make animations, one using an idea called a world and the other using a list of scenes. Each
program can execute at most one animation at any given time.

1 Creating images and scenes
Each scene in an animation is made from one or more images. Images can also be used as still
illustrations. Images are formed by overlaying various shapes.

1.1 Basic shapes
The following functions produce images with shapes that are either solid (specified as ’solid) or
outlines (specified as ’outline). In each you can choose a colour (e.g. ’red, ’yellow, ’blue, ’green,
’orange, ’purple, ’white, ’black, ’brown) as well. The sizes given below are in pixels.

The first four functions below create, respectively, a rectangle of the given width and height,
a circle of the given radius, an ellipse of the given width and height, and an upward-pointing
equilateral triangle of the given edge length, each with the specified mode and colour. The star
function creates a star with the specified number of points (at least two), each going from radius-
begin to radius-end.

(rectangle width height mode colour)
(circle radius mode colour)
(ellipse width height mode colour)
(triangle length mode colour)
(star points radius-begin radius-end mode colour)

For example, the following code will define and then display five images, each with the same
width.

(define red-rect (rectangle 40 20 ’solid ’red))
(define blue-circ (circle 20 ’outline ’blue))
(define green-tri (triangle 40 ’solid ’green))
(define orange-ellipse (ellipse 40 20 ’outline ’orange))
(define yellow-star (star 7 10 20 ’solid ’yellow))
red-rect
blue-circ
green-tri

1



orange-ellipse
yellow-star

1.2 Putting together shapes
We may wish to form a new image by putting one image in front of another. To do so, we need to
be able to specify how the images should be aligned with each other. To handle this, each image
has a pinhole. The pinhole of each shape is in the middle of the shape. The overlay function lines
up the given images at their pinholes to form a new image; the last image listed is the one in the
front.

;; overlay : image image image ...→ image

Using the shapes we created before, the following lines of code will result in the triangle being
in front, the circle being next, and the rectangle being all the way in the back.

(overlay red-rect blue-circ green-tri)

But what if we wish to align the shapes in a different way? One way is to use (overlay/xy
image1 x y image2) to place image2 on image1 such that the pinhole of image2 is offset x pixels
to the right (or left, if x is negative) and y pixels down (or up, if y is negative) of the pinhole of
image1. Using the shapes we define above, the function applications

(overlay/xy red-rect 40 0 blue-circ)
(overlay/xy red-rect 0 (− 30) green-tri)

form images in which the blue circle is placed to the right of the red rectangle and the green triangle
is placed above the red rectangle.

Another option is to create a new image with a pinhole in a different location. The world.ss
teachpack includes functions that allow us to determine where the pinhole is and to create a new
image with the pinhole in a different location. We use a coordinate system to refer to locations; the
x coordinate is the number of pixels away from the left border of the image (so the x coordinate 0
is at the left border), and the y coordinate is the number of pixels away from the top border of the
image (so the y coordinate 0 is at the top border). The location (0, 0) is at the top left corner of the
image.

;; pinhole-x: image→ num
;; Produces the x coordinate of the pinhole of animage.
(pinhole-x animage)

;; pinhole-y: image→ num
;; Produces the y coordinate of the pinhole of animage.
(pinhole-y animage)

;; put-pinhole: image num num→ image
;; Produces a new image with the pinhole at
;; (xcoord, ycoord).

2



(put-pinhole animage xcoord ycoord)

;; move-pinhole: image num num→ image
;; Produces a new image with the pinhole moved right (or left
;; if the number is negative) and down (or up if the number
;; is negative) by the xcoord and ycoord, respectively, from
;; positions in animage.
(move-pinhole animage xcoord ycoord)

;; image-width: image→ num
;; Produces the width of animage, in pixels.
(image-width animage)

;; image-height: image→ num
;; Produces the height of animage, in pixels.
(image-height animage)

1.3 Useful functions for scenes for animations
An animation can be made with any images, but due to the placement of the pinhole, it is often
more convenient to think of forming a series of rectangular scenes, each of which is just a special
type of image.

Often the animation will start out with an empty scene. This can be created using the function
empty-scene, where

(empty-scene width height)

creates a blank rectangle of dimensions width × height, placing the pinhole in the top left corner,
that is, position (0, 0).

To use an image in a scene, the function application

(place-image image x y scene)

creates the scene formed by placing the supplied image with its pinhole at position (x, y) in the
supplied scene.

2 Creating animations using worlds
In order to create an animation, you will need to provide a way of changing one world into another
(where your worlds can be numbers, symbols, or more complicated entities such as structures or
lists) and a way of generating a scene from a world. For example, if your world is a number, you
can change the world by increasing it at each tick, and you can generate a circle using the world as
the radius. You also need a way to start the clock ticking and a way to bring the animation to an
end.

3



2.1 Starting the animation
The animation starts with a call to big-bang, in which you can specify the size of the “canvas” on
which images will be drawn, the speed of the clock, and the first world. The function application

(big-bang width height ticklength firstworld)

prepares to draw scenes of dimensions width × height, creates a clock that ticks every ticklength
seconds, and makes firstworld the first world. It evaluates to true, which will appear in your
Interactions window.

For example, if our worlds are numbers, we might start the animation as:

(big-bang 100 100 (/ 1 25) 1)

2.2 Changing worlds
The function application

(on-tick-event world-to-world-fun)

specifies that at each clock tick, the function world-to-world-fun is applied to the current world to
produce the next world. The function on-tick-event evaluates to true.

For example, if the world is a number, the function advance-world might be defined to increase
the number by 1.

;; advance-world: num→ num
;; Produces one greater than nbr.
;; Examples: (advance-world 2)⇒ 3
;; (advance-world 3)⇒ 4
(define (advance-world nbr)

(+ 1 nbr))

To stop the animation, the function application (stop-when last-world?) is used to stop the
clock. This means that it is necessary to write a function last-world? that consumes a world and
produces true if the world is the last one to be displayed. For example, if we wish to stop when the
number reaches 50, we would have the following function:

(define (last-world? num)
(equal? num 50))

2.3 Translating a world into a scene
The function application

(on-redraw world-to-scene-fun)

is used to tell DrScheme to apply the function world-to-scene-fun at each tick; it evaluates to true.
You will specify a function that translates a world into a scene. For example, if the world is a

4



number, the following function can be used to convert that number into a drawing of a red circle
of radius world:

(define (num-to-circle num)
(place-image (circle num ’outline ’red) 50 50

(empty-scene 100 100)))

The example given throughout this section is summarized below; it creates a circle that in-
creases in radius until it fills the scene. It uses the functions advance-world, num-to-circle, and
last-world? defined above.

(big-bang 100 100 (/ 1 25) 1)
(on-tick-event advance-world)
(on-redraw num-to-circle)
(stop-when last-world?)

3 Creating an animation using lists of scenes
Another option is to create a list of images and then to use (run-movie list-of-images) on the list of
images to obtain an animation. It is not necessary to use scenes instead of general images, but for
this to work successfully, the images should be the same size and should each have their pinhole
in position (0, 0).

The following incompletely-documented example shows how to animate the growing circles
in a different way.

;; make-circle: num→ image
;; Produces the image of a circle of radius num.
(define (make-circle num)

(place-image (circle num ’outline ’red) 50 50 (empty-scene 100
100)))

;; make-circle-list: num num→ (listof image)
;; Produces a list of images of circles of radius num to maxsize.
(define (make-circle-list num maxsize)

(cond
[(= num maxsize) empty]
[else (cons (make-circle num) (make-circle-list (+ 1 num)
maxsize))]))

;; We can create a movie from the list of circles by the following:
(run-movie (make-circle-list 1 50))

5


