
Winter 2024
Victoria Sakhnini

Assignment: 08
Due: Tuesday, April 2, 2024 9:00 pm

Coverage: End of Module 15
Language level: Intermediate Student with lambda

Allowed recursion: Simple, Accumulative, and Mutual
Files to submit: partition.rkt, funabst.rkt, tree-pred.rkt, nested.rkt,

matrix.rkt, bonus-a08.rkt

• Make sure you read the OFFICIAL A08 post on Piazza for the answers to frequently asked
questions.

• Policies from Assignment A07 carry forward.

• Any helper functions you write that are used by only one function must be encapsulated
within a local. Helper functions used by more than one function can be defined globally,
unless stated otherwise in the question. Functions written for testing purposes can be defined
globally.

• Pro Tip: functions encapsulated with local cannot use check-expect directly. If you are
having trouble getting your helper functions to work, you might want to develop them outside
the main function, test them thoroughly, and then encapsulate them with local after you trust
they work.

Here are the assignment questions you need to solve and submit.

1. (15%): In this question, you will practice using local helper functions.

(a) (5%): In this question you will perform step-by-step evaluations of Racket programs,
as you did in assignment one. Please review the instructions on stepping in A01 and
complete the five required questions under the "Module 13: Locals" category on the
CS135 Stepping Practice website.

(b) (10%): partition consumes a predicate and a list. It produces a two element list,
(list X Y), where X is a list of those items in the consumed list that satisfy the
predicate and Y is a list of those items that don’t satisfy the predicate. The order of items
in each list must be the same as the original list.
Do not use filter.
Place your solution to the file partition.rkt.

CS 135 — Winter 2024 Assignment 08 1

https://piazza.com/class/lm6xvdp0poj2ah/post/2067
https://www.student.cs.uwaterloo.ca/~cs135/stepping

2. (15%): For this question, you may not use any global or local helper functions.

(a) Write a function or-pred that consumes a predicate (that consumes one argument) and
a list, and produces true if the application of the consumed predicate on any element
of the consumed list produces true, otherwise the function produces false. If the
consumed list is empty the function should produce false. For example:

(or-pred even? empty) => false

(or-pred odd? (list 6 10 4)) => false

(or-pred string? (list 5 "wow")) => true

(b) In class, we have seen that we are now able to put functions into lists. What can we do
with lists of functions? One thing is to apply each function in the list to a common set
of arguments. Write a function map2argfn which consumes a list of functions (each of
which takes two numbers as arguments) and a list containing two numbers. It should
produce the list of the results of applying each function in turn to the given two numbers.
For example,

(map2argfn (list + - * / list) (list 3 2)) =>

(list 5 1 6 1.5 (list 3 2))

(map2argfn empty (list 3 2)) => empty

Note that in the above first example, the first list being passed to map2argfn has five
elements, each of which is a function that can take two numbers as input. The resulting
list is also of length five.
Hint: Pay close attention to the contract for your function.

(c) Write a predicate function arranged? that consumes a (list predicate-function

binary-relational-operator) pair and a list of values (operands). The predicate
function in the first list is to determine the data type of the values in the second list and
the binary relational operator consumes the same data type (see contract below). Note
that the first list is of length 2 and the second list may be empty.
Here is a contract for arranged? (Hooray! Free mark!):

;; arranged?: (list (Any -> Bool) (X X -> Bool)) (listof Any) -> Bool

;; requires: if binary-relational-operator is applied on any

;; elements, then predicate-function produces true on

;; elements of type X

The predicate arranged?:

• produces true if the list of operands is empty or has one value and applying the
predicate on it produces true.

CS 135 — Winter 2024 Assignment 08 2

(check-expect (arranged? (list integer? <) (list)) true)

(check-expect (arranged? (list integer? >) (list 1)) true)

(check-expect (arranged? (list integer? >) (list 'red)) false)

• produces false if applying the predicate on any of the operands produces false.

(check-expect (arranged? (list string? >) (list "wow" 'red))

false)

• produces true if applying the predicate on every operand produces true and
applying the binary relational operator on all consecutive elements of the list of
operands produces true, otherwise the function produces false.

(check-expect (arranged? (list string? string>?) (list "wow"

"cs135" "amazing")) true)

Place your solutions in funabst.rkt.

3. (10%): Recall the structure and data definition of a binary tree from Module 10:

(define-struct node (key left right))

;; A Node is a (make-node Nat BT BT)

;; A Binary Tree (BT) is one of:

;; * empty

;; * Node

Write a function tree-pred which consumes a one-argument predicate (that consumes a Nat)
and produces a function. That function will consume a binary tree and produce true if the
predicate produces true for every value in the tree and false otherwise. If the tree is empty,
the produced function should produce true.

For example:

(define t (make-node 5

(make-node 10 empty empty)

(make-node 15

(make-node 20 empty empty)

(make-node 33 empty empty))))

(check-expect ((tree-pred even?) t) false)

(check-expect ((tree-pred positive?) t) true)

Place your solution in tree-pred.rkt.

CS 135 — Winter 2024 Assignment 08 3

4. (40%): For this question, we have a new data definition:

;; A (nested-listof X) is one of:

;; * empty

;; * (cons (nested-listof X) (nested-listof X))

;; * (cons X (nested-listof X))

;; Requires: X itself is not a list type

Place your solution for the following parts in a file named nested.rkt.

(a) (5%): Write a template function named nested-listof-X-template that processes a
(nested-listof X).

(b) (15%): Write a function nested-filter that consumes a predicate function and a
nested list (in that order) and removes every element that appears anywhere in the nested
list where the predicate function is false for that element.

(c) (5%): Write a function ruthless which consumes a nested list of symbols and produces
an identical list except that all instances of 'ruth have been removed.
You must use nested-filter in your solution.

(check-expect (ruthless '(rabbit (apple pluto (ruth blue) ruth)

hello))

'(rabbit (apple pluto (blue)) hello))

(d) (5%): Write a function keep-between that consumes two numbers, a and b, and a
nested list of numbers. It produces a nested list, keeping only the values between a and
b inclusive.
You must use nested-filter in your solution.

(check-expect (keep-between 5 10 '(1 3 5 (7 9 10) (8 (3 4)) 8 15))

'(5 (7 9 10) (8 ()) 8))

(e) (10%): After applying nested-filter function from the previous part, the result may
have empty nested lists. Write a function nested-cleanup that removes all empty lists
anywhere in the consumed (nested-listof Any). For example:

(nested-cleanup '(1 () 2 () () 3)) => '(1 2 3)

nested-cleanup will also remove nested empty lists:

(nested-cleanup '(1 (()()) 2 ((3 () (()))))) => '(1 2 ((3)))

And if there are no non-list elements anywhere in the list, it produces false:

(nested-cleanup '(()(()())(())())) => false

CS 135 — Winter 2024 Assignment 08 4

To implement nested-cleanup, you may not define any helper functions. This
restriction includes local helper functions, but you may define local constants if you
wish.

5. (20%): Matrices are very useful tools in mathematics and computer science. For the sake
of simplicity, consider a matrix to be a 2D grid of elements/numbers where each number is
indexed by row and column. An m×n matrix is a matrix with m rows and n columns.

For example, the following 3x3 matrix A has 3 rows and 3 columns with element ai j at row i
and column j: a00 a01 a02

a10 a11 a12
a20 a21 a22

Using this notation, row 0 is (

a00 a01 a02
)

and column 1 is a01
a11
a21

You can add and subtract matrices of the same size by applying the operators element-wise.

In Racket, we can model a matrix as a list of rows, i.e., a list of lists, and each row is a
non-empty list of the same length (i.e. each row contains the same number of elements). Note
that the number of rows in a matrix might not be the same as the number of columns in a
matrix. A matrix that has no elements is represented by empty.

For example, the matrix:

M =

 −1 2 3
4 5 6
7 8.5 9

can be represented in Racket as:

(define M (list (list -1 2 3)

(list 4 5 6)

(list 7 8.5 9)))

;; A Matrix is one of:

;; * empty

;; * (cons (listof Num) Matrix)

;; requires: each (listof Num) is non-empty and has the same length

CS 135 — Winter 2024 Assignment 08 5

(a) Write a function matrix-apply which consumes a list of functions (each with contract
Num → Num, Num → Int, or Num → Nat) and a matrix, and produces a list of matrices.
The first matrix should be the result of applying the first function to each matrix element,
the second matrix should be the result of applying the second function to each matrix
element, and so on. For example:

(matrix-apply (list abs floor (lambda (x) (+ x 3)))

'((7 4.5 -3.2)(-3 3 13)))

produces

(list (list (list 7 4.5 3.2)

(list 3 3 13))

(list (list 7 4 -4)

(list -3 3 13))

(list (list 10 7.5 -0.2)

(list 0 6 16)))

(b) Write a function scale-smallest which consumes a non-empty matrix and a real
number (the offset). This function produces a second function that consumes a
number, multiplies that number by the smallest element of the matrix, and adds the
offset.
Then ((scale-smallest '((7 4.5 3.2) (-3 3 13)) 2.4) 7) produces -18.6 be-
cause −3 · 7+ 2.4 = −18.6 . Similarly, ((scale-smallest '((7 4.5 3.2) (-3 3

13)) 2.4) -2.7) produces 10.5.
Be careful to avoid exponential blowups in your function implementation.

Place your solution in matrix.rkt.

This concludes the list of questions for you to submit solutions (but see the following pages as well).
Don’t forget to always check the basic test results after making a submission.

Assignments will sometimes have additional questions that you may submit for bonus marks.

6. (4% Bonus (each part worth 1%)): In this question, you will write some convenient
functions that operate on functions, and demonstrate their convenience. In addition to the
other restrictions in this assignment, you may not use the built-in compose function. Place
your solution in the file bonus-a08.rkt.

(a) Write the function my-compose that consumes two functions f and g in that order, and
produces a function that when applied to an argument x gives the same result as if g is
applied to x and then f is applied to the result (i.e., it produces (f (g x))).

CS 135 — Winter 2024 Assignment 08 6

(b) Write the function curry that consumes one two-argument function f , and produces a
one-argument function that when applied to an argument x produces another function
that, if applied to an argument y, gives the same result as if f had been applied to the
two arguments x and y.

(c) Write the function uncurry that is the opposite of curry, in the sense that for any
two-argument function f , (uncurry (curry f)) is functionally equivalent to f .

(d) Using the new functions you have written, together with filter and other allowed
built-in Racket functions, give a nonrecursive definition of eat-apples from Module
14. You may not use any helper functions or lambda.

The name curry has nothing to do with delicious food in this case, but it is instead attributed
to Haskell Curry, a logician recognized for his contribution in functional programming. The
technique is called “currying” in the literature, and the functional programming language
Haskell, which provides very simple syntax for currying, was also named after him. The
idea of currying is actually most correctly attributed to Moses Schönfinkel. “Schönfinkeling”
however does not have quite the same ring.

Enhancements: Reminder—enhancements are for your interest and are not to be handed in.

The material below first explores the implications of the fact that Racket programs can be viewed as
Racket data, before reaching back seventy years to work which is at the root of both the Racket
language and of computer science itself.

The text introduces structures as a gentle way to talk about aggregated data, but anything that can be
done with structures can also be done with lists. Section 14.4 of HtDP introduces a representation of
Racket expressions using structures, so that the expression (+ (* 3 3) (* 4 4)) is represented as

(make-add

(make-mul 3 3)

(make-mul 4 4))

But, as discussed in lecture, we can just represent it as the hierarchical list '(+ (* 3 3) (* 4 4)).
Racket even provides a built-in function eval which will interpret such a list as a Racket expression
and evaluate it. Thus a Racket program can construct another Racket program on the fly, and run it.
This is a very powerful (and consequently somewhat dangerous) technique.

Sections 14.4 and 17.7 of HtDP give a bit of a hint as to how eval might work, but the development
is more awkward because nested structures are not as flexible as hierarchical lists. Here we will use
the list representation of Racket expressions instead. In lecture, we saw how to implement eval for
expression trees, which only contain operators such as +,-,*,/, and do not use constants.

CS 135 — Winter 2024 Assignment 08 7

Continuing along this line of development, we consider the process of substituting a value for a
constant in an expression. For instance, we might substitute the value 3 for x in the expression
(+ (* x x) (* y y)) and get the expression (+ (* 3 3) (* y y)). Write the function subst

which consumes a symbol (representing a constant), a number (representing its value), and the list
representation of a Racket expression. It should produce the resulting expression.

Our next step is to handle function definitions. A function definition can also be represented as a
hierarchical list, since it is just a Racket expression. Write the function interpret-with-one-def

which consumes the list representation of an argument (a Racket expression) and the list repre-
sentation of a function definition. It evaluates the argument, substitutes the value for the function
parameter in the function’s body, and then evaluates the resulting expression using recursion. This
last step is necessary because the function being interpreted may itself be recursive.

The next step would be to extend what you have done to the case of multiple function definitions
and functions with multiple parameters. You can take this as far as you want; if you follow this path
beyond what we’ve suggested, you’ll end up writing a complete interpreter for Racket (what you’ve
learned of it so far, that is) in Racket. This is treated at length in Section 4 of the classic textbook
“Structure and Interpretation of Computer Programs”, which you can read on the Web in its entirety
at http://mitpress.mit.edu/sicp/ . So we’ll stop making suggestions in this direction and
turn to something completely different, namely one of the greatest ideas of computer science.

Consider the following function definition, which doesn’t correspond to any of our design recipes,
but is nonetheless syntactically valid:

(define (eternity x)

(eternity x))

Think about what happens when we try to evaluate (eternity 1) according to the semantics we
learned for Racket. The evaluation never terminates. If an evaluation does eventually stop (as is the
case for every other evaluation you will see in this course), we say that it halts.

The non-halting evaluation above can easily be detected, as there is no base case in the body of the
function eternity. Sometimes non-halting evaluations are more subtle. We’d like to be able to
write a function halting?, which consumes the list representation of the definition of a function
with one parameter, and something meant to be an argument for that function. It produces true
if and only if the evaluation of that function with that argument halts. Of course, we want an
application of halting? itself to always halt, for any arguments it is provided.

This doesn’t look easy, but in fact it is provably impossible. Suppose someone provided us with
code for halting?. Consider the following function of one argument:

(define (diagonal x)

(cond

CS 135 — Winter 2024 Assignment 08 8

[(halting? x x) (eternity 1)]

[else true]))

What happens when we evaluate an application of diagonal to a list representation of its own
definition? Show that if this evaluation halts, then we can show that halting? does not work
correctly for all arguments. Show that if this evaluation does not halt, we can draw the same
conclusion. As a result, there is no way to write correct code for halting?.

This is the celebrated halting problem, which is often cited as the first function proved (by Alan
Turing in 1936) to be mathematically definable but uncomputable. However, while this is the
simplest and most influential proof of this type, and a major result in computer science, Turing
learned after discovering it that a few months earlier someone else had shown another function to
be uncomputable. That someone was Alonzo Church, about whom we’ll hear more shortly.

CS 135 — Winter 2024 Assignment 08 9

