
Winter 2025
Clarke

Assignment: 09
Due: Friday, April 4, 2025 9:00 pm

Coverage: L19
Language level: Intermediate Student with Lambda

Allowed recursion: See assignment policies
Files to submit: partition.rkt, super.rkt alf.rkt engine.rkt

Assignment policies:
• Make sure you read the official assignment post on ed.

• Unless otherwise indicated, you may use abstract list functions and/or lambda to answer any
question.

• Unless otherwise indicated, you may define helper functions as needed.

• If a question requires the use of abstract list functions, you may not use any kind of recursion
in your solution. Otherwise, you will not receive any marks for the question.

• If a question requires the use of lambda, you must use lambda as indicted. Otherwise, you
will not receive any marks for the question.

• If a question places restrictions on the use of particular constructs, you must follow those
restrictions. Otherwise, you will not receive any marks for the question.

• Functions and symbols must be named exactly as they are written in the assignment questions.

• You test cases must provide full coverage, i.e., no highlighting, but you do not need to
provide a purpose or contract for any function.

Here are the assignment questions you need to solve and submit.

1. [12%]: Write a function partition that consumes a predicate and a list. It produces a two
element list, (list X Y), where X is a list of those items in the consumed list that satisfy the
predicate, and Y is a list of those items that don’t satisfy the predicate. The order of items in
each list must be the same as the original list.

(check-expect

(partition symbol? '(6 apple 12 egg bread))

'((apple egg bread) (6 12)))

(check-expect

(partition odd? '(1 2 3 4 5 6 7 8 9))

'((1 3 5 7 9) (2 4 6 8)))

(check-expect (partition empty? '(() (()) ())) '((()()) ((()))))

Place your solution in partition.rkt.

CS 135 — Winter 2025 Assignment 09 1



2. [28%]: Place your solutions to the following questions in super.rkt. You may use lambda

expressions, but you may not define helper functions, even inside a local. Your solution to
each of the parts of this question should have no more than one define.

(a) [10%]: Lecture L17 introduced the function (filter pred? lst) that produces a list
with the elements of lst for which the predicate pred? produces a true value. Write
a function super-filter that generalizes filter to work on an arbitrarily nested list
applying the predicate to filter non-list elements in each nested list.

(check-expect

(super-filter

odd?

(list 1 (list 2 (list 2 3 4) 5 6 (list 7 8 9)) 10 11 12))

(list 1 (list (list 3) 5 (list 7 9)) 11))

(b) [6%] Using a predicate with super-filter, define a function (ruthless lst) that
removes the symbol 'ruth from a nested list of symbols.

(check-expect

(ruthless

(list 'rabbit

(list 'apple 'pluto

(list 'ruth 'blue) 'ruth) 'hello))

(list 'rabbit

(list 'apple 'pluto

(list 'blue)) 'hello))

(c) [6%] Using a predicate with super-filter, define a function (supersize n lst) that
removes all numbers less than n from a nested list of natural numbers.

(check-expect

(supersize 4 (list 8 1 (list 2 6 3) 10 1))

(list 8 (list 6) 10))

(d) [6%] Using a predicate with super-filter, define (super-keeper pred? lst), a
function that produces a list with the elements of lst for which the predicate pred?

produces a false value.

(check-expect

(super-keeper

odd?

(list 1 (list 2 (list 2 3 4) 5 6 (list 7 8 9)) 10 11 12))

(list (list 2 (list 2 4) 6 (list 8)) 10 12))

CS 135 — Winter 2025 Assignment 09 2



3. [36%]: This question depends on material in lecture L19. Implement the following functions
with abstract list functions. You may not use recursion. You may use lambda expressions, but
you may not define helper functions, even inside a local. Your solution to each of the parts
of this question should have no more than one define.

(a) [6%]: occurrences consumes a list of numbers and a number, in that order, and
produces the number of times that the given number occurs in the list of numbers.

(b) [6%]: absolutely-odd consumes a list of integers and produces the sum of the absolute
values of the odd integers in the list.

(c) [6%]: zip consumes two lists of equal length, and produces a list of pairs (two element
lists) where the ith pair contains the ith element of the first list followed by the ith
element of the second list.

(d) [6%]: unzip consumes a list of pairs, and produces a list of two lists. The first list
contains the first element from each pair, and the second list contains the second element
from each pair, in the original order. Unzipping an empty list produces '(() ()).

(e) [6%]: dedup (“de-duplicate”) consumes a list of numbers and produces a new list with
only the first occurrence of each element of the original list.

(f) [6%]: (subsequence lst from to) consumes a list and two natural numbers. It
produces the subsequence from lst that begins at index from and ends just before index
to. Indexing starts at 0.

(check-expect (occurrences '(1 2 1 2 2 3 1) 2) 3)

(check-expect (occurrences '() 2) 0)

(check-expect (occurrences '(1 2 1 2 2 3 1) 4) 0)

(check-expect (absolutely-odd '(1 -5 4 6 5)) 11)

(check-expect (zip '(1 2 3) '(a b c)) '((1 a)(2 b)(3 c)))

(check-expect (unzip '((1 a)(2 b)(3 c))) '((1 2 3) (a b c)))

(check-expect (unzip '()) '(()()))

(check-expect (dedup '(1 2 1 3 3 2 4)) '(1 2 3 4))

(check-expect (subsequence '(a b c d e f g) 1 4) '(b c d))

(check-expect (subsequence '(a b c d e f g) 1 1) '())

(check-expect (subsequence '(a b c d) 0 400) '(a b c d))

(check-expect (subsequence '(a b c d e f g) 0 7) '(a b c d e f g))

(check-expect (subsequence '(a b c d) 0 400) '(a b c d))

Place your solutions in alf.rkt.

If you are having trouble answering a question, you might start by solving it using recursion,
in the way you might have solved it for an earlier assignment. Once it works, try to evolve
it towards a solution that uses lambda instead of helper functions and abstract list functions
instead of recursion.

CS 135 — Winter 2025 Assignment 09 3



4. [24%] This question continues from related questions on assignments #5 and #6. In this
question, you will write a game engine that allows three players to play a game of Dou Dizhu.
For this question, we will supply the players for testing purposes.

We use the definitions of Card and Hand from assignments #5 and #6. Recall from those
assignments that a Hand is a sorted list of Card, where a Card is one of 3, 4, 5, 6, 7, 8, 9, 10,
'Jack, 'Queen, 'King, 'Ace, 2, 'Black, and 'Red. Playable hands are limited to those given
in assignment #6, specifically rockets, bombs, solos, pairs, trios, straights, straight pairs, and
airplanes, plus empty, which will be used to indicate a pass. If two players in a row pass, the
third player may not pass, but can play any of the cards they are holding that form a playable
hand.

At the start of a Dou Dizhu game, each of the three players bid for the role of “landlord”. In
this assignment, we assume that has already taken place. The landlord will play first and will
have 20 cards, while the other players will have 17 cards. These hands together will form a
standard deck of 54 cards. In the actual game, bids can be between 1 and 3, and can double
when certain hands are played. In this assignment, we will ignore all aspects of the game
related to bidding and scoring. Your job is to write a function that plays the game and decides
the winner, where the winner is the first player to have an empty hand.

A Player is a function: Hand Role (listof Hand) -> Hand

A Player consumes the Hand the player is holding, a Role, which is (anyof 'Landlord,

'Right, 'Left) and a (listof Hand) indicating the hands played so far. The 'Landlord

starts play, followed by the 'Right player, then the 'Left player, then the 'Landlord again,
and so on. The list of played hands records all plays in order, including empty for a pass, with
the most recent hand first. The players we provide for testing will always produce playable
hands from the cards they are holding. While the rules for which hand may follow another
are given in the bonus question of assignment #6, you do not need to worry about them. Our
test players will play fairly and not attempt to cheat.

To make things clearer, here is a helper function that consumes a list of played hands and
determines if both previous players have passed:

(define (both-passed played)

(and (cons? played) (empty? (first played))

(cons? (rest played)) (empty? (second played))))

You are free to include this helper function in your solution.

The provided file players.rkt contains three examples of players: goldfish, cautious,
and reckless. For example, the goldfish player passes unless the rules of the game require it
to play, in which case it will play the lowest single card it holds:

(define (goldfish hand role played)

(cond [(both-passed played) (list (first hand))]

[else empty]))

CS 135 — Winter 2025 Assignment 09 4



To use this provided file, you must place it in the same folder as your solution file and include
(require "players.rkt") at the top of your solution file. You are welcome to use code in
this file in your solution if that helps somehow.

Write a function (doudizhu players hands) that consumes a list of three players, as defined
above and a list of the three hands they are holding, and plays the game. Both lists are ordered
by role: 'Landlord first, 'Right second, and 'Left third. The function produces the role of
the winning player. The critical step is removing the played cards from the hand the player is
holding on the next recursive call.

For example, if it is the landlord’s turn to play, your engine should:

• Call the landlord’s Player, passing it the Hand the landlord is currently holding, the role
'Landlord, and the list of hands played so far. The landlord’s Player returns the Hand

to play.

• Remove the played Hand from the Hand the landlord is holding.

• If the landlord now has an empty hand, the game ends. Produce 'Landlord.

• Otherwise, cons the played Hand on to the front of the list of hands played.

• Recusively call the game engine with 'Right as the next Player.

(define hand0

'(3 3 3 3 4 5 6 7 7 7 9 9 Jack Jack Queen King 2 2 Black Red))

(define hand1

'(4 4 4 5 5 6 6 7 8 9 10 Jack Queen King Ace 2 2))

(define hand2

'(5 6 8 8 8 9 10 10 10 Jack Queen Queen King King Ace Ace Ace))

(check-expect

(doudizhu (list goldfish goldfish goldfish) (list hand0 hand1 hand2))

'Left)

(check-expect

(doudizhu (list reckless goldfish goldfish) (list hand0 hand1 hand2))

'Landlord)

(check-expect

(doudizhu (list cautious reckless goldfish) (list hand0 hand1 hand2))

'Landlord)

Place your solutions in engine.rkt

This concludes the list of questions for you to submit solutions. Don’t forget to always check the
basic test results after making a submission.

CS 135 — Winter 2025 Assignment 09 5


