Assignment: 10
Due: Tuesday, April 5, 2022 9:00pm
Language level: Intermediate Student with lambda
Allowed recursion: Simple, accumulative, and generative recursion
Files to submit: puzzle.rkt, subsets-ab.rkt, subsets-c.rkt, acadinteg-a10.txt
Warmup exercises: HtDP 28.1.6, 28.2.1, 30.1.1, 31.3.1, 31.3.3, 31.3.6, 32.3.1
Practice exercises: HtDP 28.1.4, 28.2.2, 28.2.3, 28.2.4, 31.3.7, 32.3.2, 32.3.3

• Make sure you read the OFFICIAL A10 post on Piazza for the answers to frequently asked questions.

• Unless stated otherwise, all policies from Assignment 09 carry forward.

• This assignment covers material up to the end of Module 18.

• you may assume that you have full access to all forms of recursion, all techniques learned this term, and all built-in functions and special forms in Intermediate Student with Lambda that have been covered in the course.

This includes higher-order list functions map, filter, foldr, build-list, quicksort, and foldl.

You may also use reverse.

• Your solutions must be entirely your own work.

• Solutions will be marked for both correctness [70%] and style [30%]. Follow the guidelines in the Style Guide. However, there are no marks assigned to your own testing for this assignment. Although you are not required to include full test suites in your files, you are encouraged to do your own testing as you develop your solutions.
1. [7+7+7+7+8+9+9+9 = 70% Correctness] In this question you will be writing functions that will help you solve a binary puzzle. A binary puzzle is an $n \times n$ grid. The grid’s dimensions (n) will always be a positive even number. Here are the rules of a solution for a binary puzzle as described at binarypuzzle.com

- Each box of the grid must contain a zero or a one.
- No more than two of the same numbers may appear next to or below each other in the puzzle. In other words, you cannot have three or more of the same number in adjacent positions in any row or column.
- Each row and each column must contain an equal number of zeros and ones.
- Each row is unique relative to other rows and each column is unique relative to other columns.

If you want to solve a binary puzzle, you will be given a starting grid that has some of the values filled in with randomly placed zeros and ones. You must logically determine how to fill in the rest of the puzzle. Each puzzle has exactly one solution. For example, if you started with this grid

\[
\begin{array}{ccc}
1 & 0 & \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{array}
\]

the solution would be

\[
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

There are many puzzles you can try yourself at puzzle.com. This is also a source of test data.

You will be working with the following data definition:
A BinaryPuzzle is a (listof Str) requires:
the length of the list equals the length of each of the strings
the length of the strings in the list is a positive even number
the characters in the strings are (anyof #\0 #\1 #\-)
the #\- character represents a position in the puzzle
that is unfilled

For example, the starting puzzle shown previously could be represented as follows:

(define start-6x6
 (list "1--0--"
 "--0-1"
 "-00--1"
 "------"
 "00-1--"
 "-1--00"))

You will be writing several functions that will help you solve binary puzzles. Any function
you are required to write can be used as a helper function in any other part of the question. You
have been provided a starting file puzzle.rkt that contains several constants representing
starting puzzles and solutions for those puzzles. Some of the puzzles are easy to solve, and
some of them are very hard to solve.

(a) Write the function line-done? that consumes a string that contains only the characters
 #\0, #\1, and #\-. The length of the string is a positive, even number. The function
 produces true if it is a string representing a completed, valid row or column of a binary
 puzzle, and produces false otherwise. In other words, a line is complete and valid if it
 contains an equal number of zeros and ones, there are no unfilled spots, and there is not
 a sequence of three or more adjacent characters that are the same.

(b) Write the function transpose that consumes a BinaryPuzzle and produces a BinaryPuzzle
 that has the columns of the puzzle consumed appear as rows in the puzzle produced. For
 example, if you consumed the puzzle start-6x6 the function would produce

 (list "1---0-"
 "--0-1"
 "-00--1"
 "------"
 "00-1--"
 "-1--00")

 The function build-list may be helpful here.

(c) Write the function puzzle-done? that consumes a BinaryPuzzle and produces true if
the puzzle is completely filled with zeros and ones and meets all of the requirements of a binary puzzle, and produces false otherwise.

(d) One approach to solving puzzles is to make a random guess at a partial solution, and follow it through to see if the guess leads to a correct solution. The next three functions facilitate that approach.

Write the function find-unfilled that consumes a BinaryPuzzle and produces a two element list representing the location of the first unfilled spot. The first element of the list represents the row and the second element of the list represents the column. The first unfilled spot appears at the leftmost position of the topmost row that contains an unfilled spot in the puzzle. For example the first unfilled spot in start-6x6 is row 0 and column 1. So if find-unfilled consumed start-6x6 it would produce '(0 1). If there are no unfilled spots, the function should produce '(-1 -1).

(e) Write the function try that consumes a BinaryPuzzle, a natural number representing the row position of the first unfilled spot in the puzzle, a natural number representing the column position of the first unfilled spot in the puzzle, and a string that is either "0" or "1", in that order. You may assume that the BinaryPuzzle consumed contains at least one unfilled spot. The function should produce a BinaryPuzzle that is a copy of the puzzle consumed, except that the unfilled spot indicated by the natural numbers is filled with the string that is consumed. For example, (try start-6x6 0 1 "0") produces:

(list "10-0--"
"-00-1"
"-00-1"
"------"
"00-1--"
"-1--00")

(f) Write the function neighbours that consumes a BinaryPuzzle and produces a list containing BinaryPuzzles that are the next attempt to find a solution. If there are no empty spots in the puzzle consumed, the function should produce empty. Otherwise, the function should produce a two element list where the first element is a copy of the puzzle consumed with a "0" filled in the first unfilled spot, and the second element is a copy of the puzzle consumed with a "1" in the first unfilled spot.

(g) There are many strategies that can be used to logically fill in some or all of a binary puzzle, rather than making random guesses. For the next two functions you will be using a specific set of logical rules to help find a partial or full solution for a puzzle. In this part, you will be using the following logic to fill in unfilled spots from a single row or column of the puzzle.

- If you have already identified half of the values in the a particular row or column as being a 0, then you know each of the remaining unfilled spaces must be filled with a 1.
• Similarly, if you have already identified half of the values in a particular row or column as being a 1, then you know each of the remaining unfilled spaces must be filled with a 0.

• If you have two of the same character adjacent to each other, then you know that an unfilled spot on either side of those adjacent values must be the opposite number. For example, if you see "--00--" you can fill in two of the unfilled spots and end up with "-1001-".

• If you have two of the same character separated by a single unfilled spot, then you know that unfilled spot must be the opposite number. For example, if you see "--1-1-" you can fill in the unfilled spot in between the two ones and end up with "--101-".

• Once you have filled in some of the unfilled spots according to the previous rules, you may now be able to revisit the string and fill in some other spaces. For example, if you start with "0-001-1", then by the previous rules we can fill in some of the unfilled spots and end up with "0-10011". But now you can use the logical strategy that recognizes that since you have already filled in half the spots with a 0, then each of the remaining spots (in this case just one spot) must be filled with a 1. Thus you can fill in this line completely and end up with "0110011".

Write the function `fill-spots` that consumes a string representing a row or column from a binary puzzle. It produces the string where as many of the unfilled spots are logically filled in according to the strategies listed above.

Note that it is possible that you cannot fill in any of the unfilled spots. For example, the string "0----1" does not have enough information alone to fill in any of the unfilled spots. Also, there are other logical strategies that you could use when actually solving the puzzle that would allow you to fill in some unfilled spots. However, you must not use them when creating a solution for this question.

(h) Write the function `update-puzzle` that consumes a `BinaryPuzzle` and produces a `BinaryPuzzle` that has filled in as many unfilled spots as possible using the strategies described in the previous part of this question. For example, if `update-puzzle` consumes `start-6x6`, the function would produce a `BinaryPuzzle` that represents the completed puzzle described at the beginning of this question. For your own testing purposes, the Easy and Medium puzzles at `binarypuzzle.com` can usually be completed using the strategies of `update-puzzle`.

(i) Now it is time to write the function `solve-puzzle` that consumes a `BinaryPuzzle` and produces a completed and correct `BinaryPuzzle`.

Some puzzles are easy, and can be solved just using `update-puzzle`. However, other puzzles are harder, and we need to do more to determine the solution. If after updating the puzzle, you still have some unfilled spaces, one strategy is to try filling in a space with a 0 or a 1 and then continue trying to solve the puzzle. Then you can update the puzzle based on this guess. If you still have not completed the puzzle, you can make another guess. If you get to the point where you have filled in all the spaces and the
puzzle is correct, then you are done. However, if you get to the point where you have filled in all the spaces but the puzzle is not correct, then you know a value you guessed was incorrect. Now you have to go back and try a different guess.

This guessing technique can be implemented by trying to find a route from the starting puzzle to the solution. You can do this by modifying the `find-path` algorithm from slides 17 and 18 in Module 18. The finished puzzle is the last node in the route that you find. Incorrect guesses will automatically lead to backtracking in the `find-path` algorithm.

In the modified `find-path` function, the nodes of the graph are not listed explicitly; they need to be generated by functions. The nodes of the graph are partially completed puzzles that have been updated as much as possible using the `update-puzzle` function. The neighbours of the nodes of the graph come from puzzles where only one unfilled space has been filled in with a 0 or a 1. These puzzles are generated implicitly using the `neighbours` function.

If you have properly implemented all of the other parts of this question, then solving the puzzle is relatively straight-forward code.

Notes:

- Since we carefully choose the neighbours by always making guesses at the first unfilled spot in the puzzle, we do not have to worry about cycles or diamonds in our graph.
- All puzzles are guaranteed to have a solution.
- It might take several seconds for your solution to solve the `start-10x10-vh-10` puzzle provided to you in the starting file for this question. However, it should not take more than a minute if you have followed the strategies outlined in this assignment. Most of our tests will be based on puzzles that can be solved quickly. However, if your solution for `solve-puzzle` is very slow, you will not receive full correctness marks.

This concludes the list of questions for which you need to submit solutions. Don’t forget to always check your email for the public test results after making a submission.

2. **5% Bonus**: Place your solutions for part (a) and (b) in the file `subsets-ab.rkt`, and your solution for part (c) in `subsets-c.rkt`. You do not need to include the design recipe for any of these bonus questions.

(a) Write the Racket function `subsets1`, which consumes a list of numbers and produces a list of all of its subsets. For example, `(subsets1 '(1 2))` should produce something like `(list '(1 2) '(1) '(2) '())`. The order of subsets in the list may vary - any complete ordering will be accepted. You can assume the consumed list does not contain any duplicates. Write the function any way you want. (Value: 1%)
(b) Now write the Racket function \texttt{subsets2}, which behaves exactly like \texttt{subsets1} but which does not use any explicit recursion or helper functions. You must rely on higher order list functions and \texttt{lambda} (and potentially standard list functions like \texttt{cons}, \texttt{first}, \texttt{rest}, \texttt{append}, etc.). Your solution must only be two lines of code, one of which is the function header. Note that if you solve this question, you can also use it as a solution to the previous one—just copy the function and rename the copy \texttt{subsets1}. (Value: 1\%)

(c) For the ultimate challenge, write the Racket function \texttt{subsets3}. As always, the function produces the list of subsets of a consumed list of numbers. Do not write any helper functions, and do not use any explicit recursion (i.e., your function cannot call itself by name). Do not use any higher order list functions. In fact, use only the following list of Racket functions, constants and special forms: \texttt{cons}, \texttt{first}, \texttt{rest}, \texttt{empty?}, \texttt{empty}, \texttt{lambda}, and \texttt{cond}. You are permitted to use \texttt{define} exactly once, to define the function itself. (Value: 3\%)

\textbf{Note:} It is your responsibility to make sure your code is not using explicit recursion, otherwise your solutions may pass the basic tests, but you still will not receive any grades for it.

\textbf{Enhancements}: Reminder—enhancements are for your interest and are not to be handed in.

Consider the function (\texttt{euclid-gcd}) from slide 9-23. Let f_n be the nth Fibonacci number. Show that if $u = f_{n+1}$ and $v = f_n$, then $(\texttt{euclid-gcd u v})$ has depth of recursion n. Conversely, show that if $(\texttt{euclid-gcd u v})$ has depth of recursion n, and $u > v$, then $u \geq f_{n+1}$ and $v \geq f_n$. This shows that in the worst case the Euclidean GCD algorithm has depth of recursion proportional to the logarithm of its smaller input, since f_n is approximately ϕ^n, where ϕ is about 1.618.

You can now write functions which implement the RSA encryption method (since Racket supports unbounded integers). In Math 135 you will see fast modular exponentiation (computing $m^e \mod t$). For primality testing, you can implement the little Fermat test, which rejects numbers for which $a^{n-1} \not\equiv 1 \pmod{n}$, but it lets through some composites. If you want to be sure, you can implement the Solovay–Strassen test. If $n - 1 = 2^d m$, where m is odd, then we can compute $a^m \pmod{n}$, $a^{2m} \pmod{n}$, ... , $a^{n-1} \pmod{n}$. If this sequence does not contain 1, or if the number which precedes the first 1 in this sequence is not -1, then n is not prime. If n is not prime, this test is guaranteed to work for at least half the numbers $a \in \{1, \ldots, n-1\}$.

Of course, both these tests are probabilistic; you need to choose random a. If you want to run them for a large modulus n, you will have to generate large random integers, and the built-in function \texttt{random} only takes arguments up to 4294967087. So there is a bit more work to be done here.

For a real challenge, use Google to find out about the AKS Primality Test, a deterministic polynomial-time algorithm for primality testing, and implement that.

Continuing with the math theme, you can implement the extended Euclidean algorithm: that is, compute integers a, b such that $am + bn = \text{gcd}(m, n)$, and the algorithm implicit in the proof of the Chinese Remainder Theorem: that is, given a list (a_1, \ldots, a_n) of residues and a list (m_1, \ldots, m_n)
of relatively coprime moduli (gcd\(m_i,m_j\) = 1 for \(1 \leq i < j \leq n\), find the unique natural number \(x < m_1 \cdots m_n\) (if it exists) such that \(x \equiv a_i \pmod{m_i}\) for \(i = 1, \ldots, n\).