
CS135 Tutorial 02 Page 1 of 7

CS135 Tutorial 02

CS135 Tutorial 02 Page 2 of 7

Basic Tests
v Write a function to convert degrees Fahrenheit to degrees Celsius.

𝐶(𝐹) =
5
9
∗ (𝐹 − 32)

v Note the error in the body of fahr->celsius. Which of the following check-expects

will pass (if any)?

(check-expect (fahr->celsius 32) 0) ; freezing point of water
(check-expect (fahr->celsius 212) 100) ; boiling point of water
(check-expect (fahr->celsius -40) -40) ; cross-over point

(define (fahr->celsius degF)
 (* 5/8 (- degF 32)))

CS135 Tutorial 02 Page 3 of 7

Basic Tests
v Likely Basic Tests for fahr->celsius:

Ø (check-expect (fahr->celsius 32) 0)
Ø (check-expect (number? (fahr->celsius 212)) true)

CS135 Tutorial 02 Page 4 of 7

Basic Tests
v Likely Basic Tests for fahr->celsius:

Ø (check-expect (fahr->celsius 32) 0)
Ø (check-expect (number? (fahr->celsius 212)) true)

Conclusions: Basic Tests are focused on
v Is your function named correctly?
v Does it consume the correct number and type of parameters?
v Does it produce an answer of the expected type?

Basic Tests are not particularly concerned with the correctness of your function.
That is your responsibility.

CS135 Tutorial 02 Page 5 of 7

Substitution Rules
Repeatedly rewrite the leftmost eligible subexpression with one of the following
substitution rules until a value or error is obtained:
v (f v1 … vn) => v where f is a built-in

function, v1 … vn are values, and v is the
value of f(v1 … vn).

v (f v1 … vn) => exp’ where
(define (f x1 … xn) exp) occurs to the
left, and exp’ is obtained by substituting
into the expression exp, with all
occurrences of the formal parameter xi
replaced by the value vi (for i from 1 to n).

v id => val where (define id val)
occurs to the left.

v (and false …) => false
v (and true …) => (and …)
v (and) => true
v (or true …) => true
v (or false …) => (or …)
v (or) => false

Where is the rule for (not v)?

CS135 Tutorial 02 Page 6 of 7

Rollercoaster Rules
v Riders must be at least 1.2 meters tall.
v Riders must be at least 12 years old or accompanied by an adult.
v Riders with a gold pass may ride, regardless of height or age.

Write a function, (able-to-ride? height age with-adult? pass), where

Ø height is the rider’s height in meters (a number)
Ø age is the rider’s age in years (a number)
Ø with-adult? is true if the rider is accompanied by an adult and false otherwise
Ø pass is one of 'gold, 'silver, or 'bronze

able-to-ride? produces true if the rider is allowed to ride and false otherwise.

We will solve this using three different approaches.

CS135 Tutorial 02 Page 7 of 7

Rollercoaster Summary
v We solved it three different ways:

Ø A pure Boolean expression
Ø With cond, focusing on conditions where the rider is able to ride
Ø With cond and a more mixed or ad hoc set of conditions

v Learnings:

Ø There may be many ways to solve a problem. Brainstorm them before you begin.
Ø Having tests/examples available helps us get things correct.
Ø Use constants for numbers like 12 and 1.2. Name them well.
Ø boolean=? is rarely needed. It is usually banned in CS135.
Ø Boolean identifiers like with-adult? can be used directly in Boolean expressions.
Ø The order of the conditions in a cond matters.

