
CS135 Tutorial 03 Page 1 of 6

CS135 Tutorial 03

CS135 Tutorial 03 Page 2 of 6

Review of list functions
List Values List Functions
• empty: an empty list
• (cons v lst): where v is

a value and lst is a list
(which includes empty)

• (cons v lst): Consumes a value and a list;
produces a new, longer list.

• (first (cons a b)) => a
• (rest (cons a b)) => b
• (empty? empty) => true
• (empty? a) => false where a is any value other

than empty
• (cons? (cons a b)) => true
• (cons? a) => false where a is any Racket value

not created using cons

a and b are values. a can be any value; b is a list value.

CS135 Tutorial 03 Page 3 of 6

Creating List Values
• Write Racket code for this list:

DaCapo2 DaCapo 'up"Hello"

CS135 Tutorial 03 Page 4 of 6

Contracts
What would valid contracts be for the following?

(define (foo a b c) (max a b (first c))

(define (bar a b)
 (cond [(string<? a b) (cons a (cons b empty))]
 [else (cons b (cons a empty))]))

(define (qux a)
 (cond [(empty? a) 0]
 [(empty? (rest a)) 1]
 [else 2]))

CS135 Tutorial 03 Page 5 of 6

List-of-three?
Write a function, list-of-three?, which consumes a value and produces true if it is
a list with exactly three elements and false otherwise. Just for fun, do it without
using length.

Recall the design recipe steps:

1. Draft a purpose statement
2. Construct examples
3. Write the function definition header and contract
4. Finalize the purpose with parameter names
5. Write the definition body
6. Write additional tests, if needed

CS135 Tutorial 03 Page 6 of 6

Three-of-a-kind?
Evaluate the following Racket code with a person near you. List as many
improvements as you can.

;; three-of-a-kind produces true if the list has exactly three symbols
;; and they are all the same.

(check-expect (three-of-a-kind? (cons 'a (cons 'a (cons 'a empty)))) true)

;; (ListOf Symbol) -> Bool
(define (three-of-a-kind? x)
 (and (symbol=? (first x) (first (rest x)))
 (symbol=? (first x) (first (rest (rest x))))))

